A quenched invariance principle for certain ballistic ran-
dom walks in i.i.d. environments

Noam Berger and Ofer Zeitouni

Abstract. We prove that every random walk in i.i.d. environment in disien greater than or equal
to 2 that has an almost sure positive speed in a certain dinecn annealed invariance principle and
some mild integrability condition for regeneration timdsaasatisfies a quenched invariance principle.
The argument is based on intersection estimates and a thediBolthausen and Sznitman.

1. INTRODUCTION

Letd > 1. A Random Walk in Random Environment (RWRE) Bfi is defined as follows. Let*
d
denote the space of all probability measure€gn- {+e;}¢ ; and let) = (/\/l”l)Z . An environments a
pointw = {w(x, e)},eza cce, € Q2. Let P be a probability measure dn. For the purposes of this paper,
we assume tha? is an i.i.d. measure, i.e.
P=qQ"
for some distributior) on M? and thaty is uniformly ellipti i.e. there exists a > 0 such that for every
e c Ed,
Q{w(0,-) : w(0,e) < k}) =0.
For an environment € (2, theRandom Wallon w is a time-homogenous Markov chain with transition
kernel
P, (Xpnt1=z+el X, =z) =w(x,e).

Thequenched lawP? is defined to be the law oﬁzd)N induced by the transition kernél, andP* (X, =

z) = 1. With some abuse of notation, we wrig, also forP%. We letP* = P ® P2 be the joint law of
the environment and the walk, and thienealedlaw is defined to be its marginal

B0 = | PEQIPG)
We useE” to denote expectations with respectth We consistently omit the superscriptf = = 0.

We say that the RWREX (n)},>o satisfies the law of large numbers with deterministic speed
if X,,/n — v, P-a.s. Forz > 0, let [z] denote the largest integer less than or equat.tiVe say that
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the RWRE{X (n)},>¢ satisfies theannealedinvariance principle with deterministic, positive defmit
covariance matrix2 if the linear interpolations of the processes

X ([nt]) — [nvt]

\/ﬁ )
converge in distribution (with respect to the supremum togy on the space of continuous function on
[0,1]) asn — oo, under the measur@, to a Brownian motion of covariancg?. We say the process
{X (n)}n>0 satisfies thgluenchednvariance principle with variance? if for P-a.e.w, the above conver-
gence holds under the measutg. Our focus in this paper are conditions ensuring that wheanmealed
invariance principle holds, so does a quenched one.

To state our results, we need to recall the regeneratioatsneifor randomwalk in i.i.d. environment,
developed by Sznitman and Zerner in [SZ99]. We say thata regeneration time (in direction) for

{X()}if

B (t) = t>0 (1.1)

(X (s),e1) < (X(t),e1) whenever < t
and
(X (s),e1) > (X (t),e1) whenever > t.
Whenw is distributed according to an i.i.d® such that the proced$X (n), e1) }n>0 is P-almost surely
transient to+oo, it holds by [SZ99] thatlP-almost surely, there exist infinitely many regenerationets
for {X(-)}. Let
tM <@ <
be all of the regeneration times foX (-) }. Then, the sequendét (*+1) —¢ () (X (¢F+1) - X (t(F))) 15y
is an i.i.d. sequence und@r Further, iflim,, .., n~*(X (n), e;) > 0, P-a.s., then we get, see [SZ99], that
E(t® —tW) < . (1.2)
The main result of this paper is the following:

Theorem 1.1 Letd > 4 and letQ be a uniformly elliptic distribution ooM¢. SetP = QZd. Assume that
the random walk X (n)},>¢ satisfies the law of large numbers with a positive speed iliteetione;,
that is

X
lim (n)
n—oo n
Assume further that the proce§X (n)},,>¢ satisfies an annealed invariance principle with variange
Assume that there exists an> 0 such thafE(t(!))¢ < oo and, with some > 2,

E[(t® —tW)] < 0. (1.4)

If d = 4, assume further thatl(4) holds withr > 8. Then, the proces§X(-)} satisfies a quenched
invariance principle with variance?.

=uv,P—a.s withv deterministic such thaf,e;) > 0. (1.3)

(The conditionr > 2 for d > 5 can be weakened to> 1 4+ 4/(d + 4) by choosing in (3.7) below
r’ = r and modifying appropriatly the value & in Proposition 3.1 and Corollary 3.2.) We suspect, in
line with Sznitman’s conjecture concerning conditibfy see [Szn02], that (1.4) holds fdr> 2 and all
r > 0 as soon as (1.3) holds.

A version of Theorem 1.1 fad = 2, 3 is presented in Section 4. Fér= 1, the conclusion of Theo-
rem 1.1 does not hold, and a quenched invariance principleven a CLT, requires a different centering
[Zei04, Gol07, Pet08]. (This phenomenom is typical of disiend = 1, as demonstrated in [RASO06]
in the context of the totally asymmetric, non-nearest negghRWRE.) Thus, some restriction on the
dimension is needed.
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Our proof of Theorem 1.1 is based on a criterion from [BS03jich uses two independent RWRE’s
in the same environment. This approach seems limited, in principle,dc> 3 (for technical reasons,
we restrict attention t@/ > 4 in the main body of the paper), regardless of how good taiiredes on
regeneration times hold. An alternative approach to qued €1 T’s, based on martingale methods but still
using the existence of regeneration times with good taiés geveloped by Rassoul-Agha and Seppalainen
in [RASO05], [RASO07a], and some further ongoing work of thasghors. While their approach has the
potential of reducing the critical dimension do= 2, at the time this paper was written, it had not been
succesful in obtaining statements like in Theorem 1.1 withadditional structural assumptions on the
RWRE.!

Since we will consider both the case of two independent RVEREdifferent environments and the
case of two RWRE's evolving in the same environment, we thio® some notation. Far; € 2, we let
{X;(n)}n>0 denote the path of the RWRE in environmentwith law P. . We write P,,, ,,, for the law
P9 x PY, onthe paif{Xi(-), X2(-)}). In particular,

Epxp[Pow,({X1()} € A1, {Xa(1)} € A2)] = P({X1 ()} € A1) - P({X2()} € A2)

represents the annealed probability that two wdlK3(-)}, ¢ = 1,2, in independent environments belong
to setsA4;, while

EplPou({X1()} € A1, {Xa()} € A2)] = / Po{X1()} € A1) - Pu({Xa()} € A2)dP(w)

is the annealed probability for the two walks in tseameenvironment.
We use throughout the notation

<P < =12
for the sequence of regeneration times of the pro¢éss-)}. Note that wheneveP satisfies the assump-
tions in Theorem 1.1, the estimate (1.4) holds(f — ")), as well.
Notation Throughout,C' denotes a constant whose value may change from line to Ik tlat may
depend orl andx only. Constants that may depend on additional parametdérsasy this dependence in
the notation. Thus, if" is a fixed function the'r denotes a constant that may change from line to line,

but that depends of, d andx only. Forp > 1, || - ||, denotes thé.” norm onR¢? or Z¢, while || - || denotes
the supremum norm on these spaces.

2. AN INTERSECTION ESTIMATE AND PROOF OF THE QUENCHEEGLT

As mentioned in the introduction, the proof of the quenched @wolves considering a pair of
RWRE's (X;(-), X2(+)) in the same environment. The main technical tool needeckifoifowing propo-
sition, whose proof will be provided in Section 3. LBt := {z € Z% : (x,e;) > K}.

Proposition 2.1 We continue under the assumptions of Theatelnl et
Wi = {{X1()} n{X2()} N Hik # 0}

Then
EP[Pw,w(WK)] < CK™"™ (21)

L After the first version of this paper was completed and posRassoul-Agha and Seppalainen posted a preprint [RASOhich

they prove a statement similar to Theorem 1.1, for all dinmmsd > 2, under somewhat stronger assumptions on moments of
regeneration times. While their approach differs signiftgafrom ours, and is somewhat more complicated, we leaomftheir
work an extra ingredient that allowed us to extend our apgr@and prove Theorem 1.1 in all dimensiah® 2. For the convenience

of the reader, we sketch the argument in Section 4 below.
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wherek, = kq(e,r) > 0ford > 4.

We can now bring the
Proof of Theorem 1.1 (assuming Proposition 2.1). Foe 1,2, defineB? (t) = n~Y/2(X;([nt]) — [nvt])),
where the processés(; } are RWRE's in the same environmentwhose law isP. We introduce the space
C (R, R%) of continuousR?-valued functions ofR , , and theC (R, R?)-valued variable

j(+) = the polygonal interpolation of — B (%), k >0 . (2.2)

It will also be useful to consider the analogously defineccega([0, 7], R¢), of continuousR<-valued
functions on[0, T'], for T' > 0, which we endow with the distance

dr(v,v") = sup |v(s) —v'(s)| A 1. (2.3)
s<T

With some abuse of notation, we continue to wiiitéor the law of the pain 5}, 55 ). By Lemma 4.1 of
[BS02], the claim will follow once we show that for all > 0, for all bounded Lipschitz functions' on
C([0,T),R%) andb € (1,2]:

Y (Ep[Eo(F(Bu(b™)) B (F(B2(b™]))] = EIF (B (B DEF (B2 (b™)]) < 00 (2.4)

m

When proving (2.4), we may and will assume tliats bounded byl with Lipschitz constant.
Fix constantd /2 > 0 > ¢'. Write N = [b™]. Let

s :=min{t > N?/2: X;(t) € Hye, tis aregeneration time foX;(-)},i = 1,2.

Define the events
AT = {sm < NP i = 1,2,
and
Cr = {{X1(n + 7)) }ns0 N {Xa2(n + s5) }ns0 = 0}, By = AT N AT N Cyy,
Finally, write F; := o(X;(t),¢t > 0) and
Fi = o{w. : there exists @ such thatX;(t) = z} vV F;,i = 1, 2.

Note that, fori = 1, 2,

P((A7)) < ]P’(max[t(JH) t9] > N/4) + P(t1Y > N?/4) + P(X;(N?/2) & Hyor)

Jj=1
€ (D1e Nel

& NOE[ — ) | AE ([ti ] ) G+ _ Gy o N

= NTO t——pe — tP ;(’fi —t7) >
< N4 aN" R 1P 4] <N (2.5)
with &' = &’(e,0) > 0 independent ofV. Using the last estimate and Proposition 2.1, one conclilndas
ZEP w w < 0. (26)

Now,

E[F(8y)F(By")] ~ ElLs, F(3 ) F(5y Un < P(By,). (2.7)

Let the processﬁz[b (1) be defined exactly as the proce@g ), except that one replaces;(-) by
Xi(-+ s™). On the evend?", we have by construction that

sup |6 6) - B (1) < 2v12,
t
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and therefore, on the evedt” N A7,
| () - (@ E@E )| < enee, (2.8)

for some constan®’ (we used here thdt is Lipschitz (with constant) and bounded by).
On the other hand, writing’ for an independent copy af with the same distributioi®,

E[1p, F(3 V(3 )] = Ep(Bults, FBFE)
= E(La, FB ) Eultaz oo, FE ) | FY)
= Bp (B [Lay, FBY ) EulLay o, B | 7))
= Ep (B [Lay, FO Bz e, PGB ) | 7))
= Ep (Bow [1ay, FB )1z 00, FBY )
= Ep (Bow [15, FEFE)]) | (2.9)

The third equality follows from the fact that we multiply blyet indicator of the event of non-intersection.
Since

Bp (Buw [18, P Y F@E)]) = Be (Bow [FETFE])| <P,
and
B (Buuw [P FGE]) = B [P £ [F)]
we conclude from the last two displays, (2.9) and (2.8) that
[ELF(B) PaY )~ [Pl B [F(3Y )| < 2p(Bg,) + 20N 112
Together with (2.6), we conclude that (2.4) holds, and catepthe proof of Theorem 1.1. O

3. INTERSECTION STRUCTURE

In this section we prove Proposition 2.1, that is we esthldistimates on the probability that two
independent walks in the same environment intersect edwdr @t the half spacél; = {z € Z? :
(x,e1) > K}. Itis much easier to obtain such estimates for walks in tBfieenvironments, and the result
for different environments will be useful for the case of lgin the same environment.

3.1 The conditional random walk.

Under the assumptions of Theorem 1.1, the pro¢éy-), e;)} is P-a.s. transient te-co. Let
D :={Vnz0,(X(n),e1) = (X(0),e1)}.
By e.g. [SZ99], we have that
P(D) > 0. (3.1)

3.2 Intersection of paths in independent environments.

In this subsection, we let™ andw(® be independent environments, each distributed accordidg) t
Let {Y;(n)} and{Y>(n)} be random walks in the environments (respectively) andw(®, with starting
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pointsU; = Y;(0). In other words{Y7(n)} and{Y>(n)} are independent samples taken from the annealed
measure®Vi(-). Fori = 1,2 set
DY = {(Yi(n),e1) > (Ui, e1) for n >0}, i=1,2.

For brevity, we drofi/; from the notation and usR for P+ x PU2 andP? for PV (-| DY) x PUz (.| D2).
First we prove some basic estimates. While the estimatesimitar ford = 4 andd > 5, we will
need to prove them separately for the two cases.

3.2.1 Basic estimates far> 5.

Proposition 3.1 (d > 5) With notation as above and assumptions as in Thedrdm
PP ({V1()} N {Y2(-)} #0) < C||Us — Ua|| "+

whereK,; = %

The proof is very similar to the proof of Lemma 5.1 of [BerOékcept that here we need a quantita-
tive estimate that is not needed in [Ber06].

Proof of Propositior8.1 We first note that the (annealed) law {df;(-) — U;} does not depend ahand
is identical to the law of X (-)}. We also note that on the eveht’", tz(.l) =0.
Forz € Z4, let
Fi(z) = PP(3Yi(k) = 2)
and let
F(2) = F(2) 1—u, >R

We are interested ifiF;||2 and in||Fl.(R) |l2, noting that none of the two dependsioor U,. We have that

Fi(z) =Y Gi(z,n) and F™(z) =3 G (z,n) (3.2)
n=1 n=1
where
Gi(z,n) = PD(Ht(n)Sk<t(n+1)E(/€) = 2).
and

G (2 n) = PD(Htgn)gkqg"“)Yi(k) =2) - L._v,|>R-

are the occupation functions ¢¥;(-)}.
By the triangle inequality,

IFill2 <> IGin)l2 (3.3)
n=1
and
IE )2 < Y IGE ¢ n) 2. (3.4)
n=1

Thus we want to bound the norm 6f;(-, n) andGER)(~,n). We start withG; (-, n). Thanks to the
i.i.d. structure of the regeneration slabs (see [SZ99]),

GZ(77’L) = Q?’*J’
whereQ? is the distribution function o¥; (tl(.")) underP(-| DY),
J(z) = PD(EIO:tEI)Sk<t§2)}/;(k) —U; = 2),
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andx denotes (discrete) convolution. Positive speedd;) > 0) tells us that
[:=|J] <Et? —tW|D) < o
and thus
1Gi (- n)ll2 < T Q72

Under the lawP?, Q7 is the law of a sum of integrable i.i.d. random vectdr¥}* = Y;(tF+1) —
Y;(t¥), that due to the uniform ellipticity condition are non-degeate. By the same computation as in
[Ber06, Proof of claim 5.2], we get

Q2 < Cn~ /4,
and thus
IGY (- n)ll2 < |G n)[l2 < Cn= /4, (3.5)

(We note in passing that these estimates can also be obtiorada local limit theorem applied to a
truncated version of the variablésy’*.) It follows from the last two displays and (3.3) that fbe> 5,

[Fill2 <C (3.6)

For E(R) we have a fairly primitive bound: by Markov’s inequality attte fact that the walk is a
nearest neighbor walk, for any > 1,

R R n n
16D Cmllz < 167 ()l < B, 5 (4 = )] D) (3.7)
n+1 n n+1 n
< EJ 1t5n)>§(t§ V1) D]+ E| 1t5n+1>_t5n>>g(t§ Yy D)
(n+1) _ ,(n) /
_ 2nlE [ti -t } CE (tz(n+1) _ tl(ﬂ))r _ CnE((t(Q) _ t(l))2|D)
: R T TR ) B R

where the choice’ = 2 was made in deriving the last inequality. Together with Y3vBe get, with
K = [R4/(d+4)],

K [e%S)
n
IEP <o |3 2+ S nmat

n=1 n=K+1

<C [KQ/R n Klfd/‘l] < CRU-D/@+D)  (38)

Let R := ||Uy — Uy]|/2. An application of the Cauchy-Schwarz inequality yields
222 ({Yl()} n {YQ()} 75 @) < ”Fl(R)”% + 2HF1(R)H2||F1”2 -0 (R(4—d)/(d+4))
ford > 5. 0

Now assume that the two walks do intersect. How far from thetisig points could this happen?
From (3.8) we immediately get the following corollary.

Corollary 3.2 (d > 5) Fix R, Y1(:) andY2(-) as before. Let}; be the event thaf; (-) andYx(-) intersect,
but the intersection point closestd = Y;(0) is at distance> R fromY;(0). Then

PP (A, N Ay) < CRU-D/(d+4), (3.9)
3.2.2 Basic estimates far= 4.

We will now see how to derive the same estimates for dimensiomthe presence of bounds on
higher moments of the regeneration times. The crucial efasien is contained in the following lemma.
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Lemma 3.3 Letd > 3 and letv; be i.i.d.,Z?-valued random variables satisfying, for some [2,d — 1],

(v1,e1) > 1a.s, andE|v||” < oo. (3.10)
Assume that, for some> 0,
P((vi,e1) =1) >0, (3.11)
and
P(vi = 2|[{v1,e1) = 1) > 4, forall z € Z¢ with ||z — e1]|2 = 1 and(z,e1) = 1. (3.12)
Then, withiV,, = Z?:l v;, there exists a constant> 0 such that for any € Z¢,
P(3; : Wi = 2) < ¢z, ep)| 7@ D/(r+d=1) (3.13)
and, for all integerk,
Y PE:W;=z)<1. (3.14)

zi{z,e1)=K

Proof. We setTx = min{n : (W,,e1) > K}. We note first that because of (3.11), for some constant
c1 = 61(5) >0andallt > 1,
P(Ay) <e b, (3.15)

where

Ay ={#{i <t: (v, e1) =1} < 1t} .
Setv = Ev; andv = FE(v1,e1). Then, for anya < 1, we get from (3.10) and the Marcinkiewicz-
Zygmund inequality (see e.g. [Sh84, Pg. 469] or, for Burkleok generalization, [St93, Pg. 341]) that for
somecs = co(r, v, ), and allK > 0,

P(Tx < K%/20) < cg K7(272)/2 (3.16)

Let 7, := o((W;,e1),i < n) denote the filtration generated by the-projection of the random walk
{W,}. Denote byWW,- the projection ofi¥,, on the hyperplane perpendiculardp. Conditioned on the
filtration F,,, {W-} is a random walk with independent (not identically disttém) increments, and the
assumption (3.12) together with standard estimates shHwatsfor some constar = c3(9, d),
sup 1acP(W; =y|Fy) < 03t7(d71)/2, a.s. (3.17)
yEZI—1
Therefore, writingz, = (z, e1), we get for anyy < 1,

P(3,:W;=2) < P(TZ1 < z{'/2v) + P(W; = z for somei > z{ /2v)

< ez TR Z Wi = 2) < caz; P72 4 Z Wi = 2| Fi))

=29 /2v i=2z{/2v

21

S ngl r(2-a) + Z Z E 1Tz =i Sup ]_AcP(WiJ‘ :y|.7:1))

1=z /2v 1=z /2v yeza—t

21
< 62Z1—r(2—a)/2 + Zlefqu/Qv + 63(2’1/2’0)706((171)/2 Z P(Tzl _ i), (318)
=29 /2v

where the second inequality uses (3.16), and the fifth usé§)and (3.17). The estimate (3.18) yields
(3.13) by choosingx = 2r/(r +d — 1) < 1.

To see (3.14), note that the sum of probabilities is exatty éxpected number of visits o :
(z,e1) = K}, which is bounded by. O

We are now ready to state and prove the following analogueaydsition 3.1.
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Proposition 3.4 (d = 4) With notation as in PropositioB.1, d = 4 andr in (1.4) satisfyingr > 8, we
have

PP ({(i()} N {Y2()} #0) < C||Ur = Us|~%¢
whereK, > 0.

Proof. Fix v > 0 and writeU = |U; — Us|. Let {v;};>1 denote an i.i.d. sequence of random variables,
with v distributed likeY; (t®) — Y71 (¢t()) underP?. This sequence clearly satisfies the assumptions of
Lemma 3.3, withy = x?P(D).
Let T := E(¢t(® — ¢(1)). By our assumption on the tails of regeneration timesfar (0, 1) with
vr > 1,
. ) > C
i+1 7 v —vr
PD(H ot >—t§>>z)g > Lscut (3.19)
i=U/8T
By Doob’s maximal inequality, and our assumption on thestaflregeneration times,
pP (aiz% ) > 2Ti) < pP (3 v (¢ —Et) > Ti)

28T

Z ( 21U 2J+1U (tgl) — ]Eth)) > T’L)

8T 0 8T
j=0

IN

PP (3 ey« (1)~ Et") > 290/8)

Mg

7=0

- C
< OZ 2]U r/2 —yUr/2’ (320)
Jj=

Forintegerk andi = 1,2, let s, ; = max{n : <}§(t§")) e1) < k}. Let
Aivw = ﬂk>U/8T{f(Sk S (Sk’i) < (2Tk)"}.
Combining (3.20) and (3.19), we get
PP ((Aiv.,)¢) <ClUY"" + U2, (3.21)

For an integels, setCx = {z € Z% : (z,e;) = K}. Note that on the eved; 17, N Az 7., if the paths
Yi1(-) andY>(+) intersect at a point € Cx, then there exist integers 5 such thatY; (t@) - Yg(téﬁ)ﬂ <
2(2TK)". Therefore, withW,, = >~ v;, we get from (3.20) and (3.21) that, with = r A 3,

PP ({(vi()} N {Ya(")} £ 0)
< opD (t(U/8T) > U/Q) + 2P ((Aiv.,)°)

+ Y% 3 P(3i: Wi =2)P(3j: W; = 2')

K>U/8T z€Ck z':|z—2'|<2(2T K)¥
37
< C {Uﬁ LUt g2 gl | (3.22)

aslong ad — 3ry/(ro + 3) + 4v < 0, where Lemma 3.3 and (3.21) were used in the last inequéiti
r > 8 (and hence = 3), one can chose > 1/r such that all exponents &f in the last expression are
negative, yielding the conclusion. O

Equivalently to Corollary 3.2, the following is an immedtatonsequence of the last line of (3.22)
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Corollary 3.5 With notation as in CorollarB.2, d = 4 andr in (1.4) satisfyingr > 8, we have
PP(A; N Ay) < CR™F4
with K} = Kj(r) > 0.
3.2.3 Main estimate for random walks in independent envirents.
Let R > 0 and letTY (R) := min{n : Y;(n) € Hg}.
Proposition 3.6 (d > 4) LetY;(-) andY>(-) be random walks in independent environments satisfying the
assumptions of Theoreinl, with starting pointdJ;, U, satisfying(Uy, e1) = (Us,e1) = 0. Let
A(R) := (3.23)
{Vncry (m)(Y1(n), e1) = 0} N AV, cqy (ry(Ya(m), e1) = 0} N AV, ey () ety (r)Y1 (1) # Y2 (m)}.
Then,
1. There exist® > 0 such that for every choice & andU,, U, as above,

P (A(R)) > p. (3.24)
2. Let B;(n) be the event tha;(-) has a regeneration time &t (n), and let
R
Bi(R):= ] Bin). (3.25)
n=R/2
Then
P ({{Yi(n)}pZy N {Ya(m)} oy # 03 N A(R) N B1(R) N Ba(R)) < CR™ (3.26)

with 84 = ﬂd(T, 6) > 0ford > 4.

Proof. To see (3.24), note first that due to uniform ellipticity, wayrand will assume that/; — Us| > C
for a fixed arbitrary large”'. Since¢ := P(D; N D2) > 0 does not depend on the value®f the claim
then follows from Propositions 3.1 and 3.4 by choosintarge enough such th&” (A(R)¢) < ¢/2.

To see (3.26), note the eveAt R) N B, (R) N By(R) implies the evenDY" N DY, and further if
{Y1(n)}s2, n{Y1(m)}55_, # O then fori = 1,2 the closest intersection point & is at distance greater
than or equal td?/2 from U;. Therefore (3.26) follows from Corollary 3.2 and Corolleé8yp. O

3.3 Intersection of paths in the same environment.

In this subsection we takgX;(n)} and{X(n)} to be random walks in the same environmentvith
X;(0) = U;, i = 1,2, andw distributed according t@. As in subsection 3.2, we also considaf (n)}
and{Y>(n)}, two independent random walks evolving in independentrenments, each distributed ac-
cording toP. We continue to usBV+-V2 (or, for brevity,PP) for the annealed law of the pdiX (-), X2(-)),
andP for the annealed law of the paj¥i(-), Ya2(+)). Note thatP # P. Our next proposition is a standard
statement, based on coupling, that will allow us to use sditfeeaesults from Section 3.2, even when the
walks evolve in the same environment and we consider théPlaw

In what follows, a stopping tim& with respect to the filtration determined by a pathwill be
denotedl"(X).

Proposition 3.7 With notation as above, I&;(-), i = 1,2 be stopping times such tha}(X;), i = 1,2
areP-almost surely finite. Assunié, (0 ):Y1( )and X5 (0 ): 2(0). Set

Ix ::{ T1X1 ﬂ{X sz2 :(Z)}
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and

Iy = { @Y Nam) g =0}
Then, for any nearest neighbor deterministic paths(n)}n>0, ¢ = 1, 2,

P(Y;(n)=Xi(n),0<n <T;(Y:),i=1,2;1y)

=P (Xi(n) = Xi(n),0 <n <T3(X;),i=1,2;Ix) . (3.27)
Proof. For every pair of non-intersecting patfis;(n)},,>0, define three i.i.d. environmentg"), w(? and

w(®) as follows: Let{.J(2)}.ex,ux, b€ a collection of i.i.d. variables, of marginal lagv At the same time,
let {n?(2)}.cza, j = 1,2, 3 be three independent i.i.d. environments, eRetlistributed. Then define

J(z) if € A1)

1) (0 —

wii(z) = { n"(z) otherwise,
) ifzen®
(

SOz { J(z

J(z) ifze DU
(3)(5) =
w(z) { n®(z) otherwise,

and

and letY; evolve inw(, letY; evolve inw(® and letX; and X, evolve inw®). Then by construction,
P (1),w(2) (}/Z(Tl) = )\1(71), O S n S Tz(}/z)) = P (3) (Xl(’fl) = )\1(71), O S n S TZ(X’L)) .

w w

Integrating and then summing we get (3.27). O

An immediate consequence of Proposition 3.7 is that thenastis of Proposition 3.6 carry over to the
processe$X;(-), X2(-)). More precisely, lefz > 0 be given and set;* (R) := min{n : X;(n) € Hg}.
Define A(R) andB;(R) as in (3.23) and (3.25), with the proce¥sreplacingy;.

Corollary 3.8 (d > 4) Let X;(-) and X»(-) be random walks in the same environment satisfying the
assumptions of Theoreinl, with starting pointd/;, U, satisfying(U;, e1) = (Uz,e1) = 0. Then,

1. There exist® > 0 such that for every choice & andU,, U, as above,

P(A(R)) > p. (3.28)
2. WithC < o0 andgy > 0 asin 3.26),
P ({{X1(n)}52y N {X2(m)}5v2y # 0} N A(R) N Bi(R) N Ba(R)) < CR™P4. (3.29)
With 3, as in (3.29) and as in the statement of Theorem 1.1,0ix 4 satisfying
Ya < Ba(l —1g) and(l +€)(1 —q) > 1. (3.30)
For R integer, let
Ki(R) = {3 (ks0.5)r1 i< j<(k+1)r'-va SLT5(j) is a regeneration time fox; ()} ,

and let
[2r"4]

Ci(R) == [ Ki(R). (3.31)
k=1

Proposition 2.1 will follow from the following lemma:



12 Noam Berger and Ofer Zeitouni

Lemma 3.9 (d > 4) Under the assumptions of Theordni, there exist constants and~; > 0 such
that for all integerk,
P(WkgnN Ci(K)NCy(K)) < CK™.

Proof of Lemm&.9. Letw := [K'~%4] and fork = 1,...,[K¥¢/2] define the event
V1 (kw)<j<Ty ((k4+1)w) X1(J) > kw
and
Sp = VI (hw)<j<To (k+1)w) X2 () > kw (3.32)
and
() T X)) 2 = 0
By (3.28),
P (SklSfnSsn---NSg_y) > p.
Therefore,
P(UpSt) > 1— (1 — p)lE"/2, (3.33)

Now, by (3.29),
P (S, NC1(K)NCo(K)N W) < Cw™ Pt = CK~Pall=va),
We therefore get that
P (UgSk N C1(K) N Co(K) N W) < CK~Pe(=va) gva = O fga=fall=va),
Combined with (3.33), we get that
PHUX1()}n{X2()}NHrg #0 N C1(K)NCy(K)) < CK™7
for every choice ofy; < 84(1 — v¥4) — 4. O
Proof of Propositior2.1. Note that by the moment conditions on the regeneration times
P(Ci(K)) < CK~—<(=va) 4 0K . k~(F90-va) — o —c(0-va) 4 gf1-(+ad(l=va),
By the choice of)4, see (3.30), it follows that (2.1) holds for
kg <min{(1+¢e)(1 —vq) — 1,74} -

4. ADDENDUM - d = 2,3

After the first version of this work was completed and cir¢eth F. Rassoul-Agha and T. Seppalainen
have made significant progress in their approach to the Chd,psted an article [RASO7b] in which
they derive the quenched CLT for all dimensiahs> 2, under a somewhat stronger assumption on the
moments of regeneration times than (1.4). (In their workythonsider finite range, but not necessarily
nearest neighbor, random walks, and relax the uniformtalitg condition.) While their approach is quite
different from ours, it incorporates a variance reductitepsthat, when coupled with the techniques of
this paper, allows one to extend Theorem 1.1 to all dimerssiolr 2, with a rather short proof. In this
addendum, we present the result and sketch the proof.

Theorem 4.1 Letd = 2,3. Let@ and {X(n)} be as in Theoren1.1, with e = r > 40. Then, the
conclusions of Theorem1 still hold.
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Remark: The main contribution to the condition > 40 comes from the fact that one needs to
transfer estimates on regenerations times in the direetidn regeneration times in the directian see
Lemma 4.5 below. I£; = v, or if one is willing to assume moment bounds directly on thgeneration
times in directiorv, then the same proof works with> 0 arbitrary and- > 14.

Proof of Theorend.1 (sketch). The main idea of the proof is that the condition “no late isgation of
independent random walks in the same environment” may dageg by the condition “intersections of
independent random walks in the same environment are rare”.

Recall, c.f. the notation and proof of Theorem 1.1, that wedn® derive a polynomially decaying
bound on VafE,, F(3Y)) for F : C([0,1],R%) — R bounded Lipschitz an@” the polygonal interpo-
lation as in (2.2). In the sequel, we wrife" (X) := F(3Y) if 3V is the polygonal interpolation of the
scaling (as in (2.2)) of the pathX,, },,—o,...n-

For anyk, let S, = min{n : X,, € Hy}. For two patho, p» of lengthTy, Ty with p;(0) = 0, let
p1 o po denote the concatenation, i.e.

[ p(e), t <T;
p1opa(t) —{ pi(Tl)_pr(t—Tl), te (Tll,Tz]-

Use the notatiod(f ={X,,...,Xo,...,X,}. Then, we can write, for any,

FN(X3') = FN(X5 o [X &y — Xsran]) -
Now comes the main variance reduction step, which is basedastingale differences. Order the vertices
in an L' ball of radiusN centered a0 in Z in lexicographic ordef(-). Thus,z is the predecessor of,
denoted: = p(2'), if £(z") = ¢(z) + 1. Note that (because of our choice of lexicographic ord&e), ik z}
thenl(z) < £(2).

Letd > 1/r be given such thad < 1. Define the event
Wy = {3i € [0, N] : t0TD) — () 5 N0 /3 or t0+N°) _ () 5 N36/2y
By our assumptions, we have tiiVy) < C(N ¢ + N'=°"), and hence decays polynomially.
Var(E, F(6™)) < Var(E,F(8V)1we ) + O(N~),

for somed’ > 0. In the sequel we writé™™ (X)) = FN (X )1y .

SetGYN = o(w, : L(z) < U(2),||z]1 < N), and writeH;, = {z : (z,e;) = k}. We have the
following martingale difference representation:

EFN(X)-EFN(X) = 3 [E(FV(X)IG.) ~E(FY(X)(Gy))]

zi|z1<N
N

=y oAl (4.1)
k==N el ,|2[1<N

Because it is a martingale differences representation,ave h

N
VarE,FN(X) = S Y E(aN)?. (4.2)

k:*Nzeﬁk,\thN

Because of the estimaii(t())¢] < oo, the Lipschitz property of”, and our previous remarks concerning
W, the contribution of the terms with < 2N to the sum in (4.2) decays polynomially. To control the
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terms withk > 2N°, for z € Hj, let 7. denote the largest regeneration tithé smaller thanS,_ s, and
write 7 for the first regeneration time larger th&h, ys. Then,

FN(X) = FN(XJ o [X7F — X, ]o (XN - X4)).

Because of the Lipschitz property 61, our rescaling, and the fact that we work on the evéfit, we have
the bound

PN o X7 = Xp] o [XA = X)) = FY(XG o [X2 — X, ])| < 4NGID/2,
One then obtains by standard manipulations
E (AY)? < CN¥ T E[(Ey[Lx visitss])?] -

Let Iy denote the number of intersections, up to tivieof two independent copies §fX (n) },>¢ in the
same environmenthen,

Z [E(Ew[]-X visitsz])z] - E(EwaIN) . (43)

zlzllh <N
Combining these estimates, we conclude that
Var(E,FN (X)) < CN¥'E(EyxuIy) + N7 (4.4)
The proof of Theorem 4.1 now follows from the following lemma

Lemma 4.2 Under the assumptions of Theoreirl, for d > 2 andr > 40, we have that for’ <
r/4—1/2and anye’ € (0,1/2 —4/r" +2/(r')?),

[E(Eyxwln)] < CN'E (4.5)
whereC depends only oH'.
Indeed, equipped with Lemma 4.2, we deduce from (4.4) that
Var(E,FN (X)) < N~% 4+ CN'=¢ N1,

Thus, whenevef > 1/r is chosen such th8b < ¢/, (which is possible as soon as> 3/¢’, which in turn
is possible for some’ < 1/2 —4/r" +2/(r")? if r > 40), Var(E,FY (X)) < CN~9, for somes > 0.
As mentioned above, this is enough to conclude. O

Before proving Lemma 4.2, we need the following estimate:
Lemma 4.3 LetS, be ani.i.d. random walk oR with £S; = 0 and E|S1|" < oo for r > 3. LetU,, be
a sequence of events such that, for some constant3/2, and alln large,
1

nas

P(U,) > 1— (4.6)

In addition we assume thdUj } <, is independent of S, — Sy, }>n for everyn.
Leta; € (0,1) andas > 0 be given. Suppose further that for anyinite,

P(forallt <n, S, > |t | andU, occurd > 0.

Then, there exists a constafit= C'(aq, ag, asz) > 0 such that for anyr’,

P(forallt <T,S; > |t | andU; occurg > (4.7)

T1/2+a2 :
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Proof. Fix constantg > 0, a € (0,1) andg € (1,2) (eventually, we will takew — 1,3 — 2 and
€ — 00). Throughoutthe proof,’ denote constants that may change from line to line but magrmtpnly
on these parameters. Defie= |i%¢| andc; = [i1]. Consider the sequence of stopping timgs= 0
and

Titl = min{n >T10 8, — Sﬂ, > Cip1 — G orsS, — Sﬂ, < bi+1 — Ci}.
Declare an index good if S, — S;,_, = ¢ — ¢;—1. Note that if the indices = 1,..., K are all good,
thensS,, > b;,_; foralln € (Tifl,Ti], i=1,..., K.
Let the overshooO; of {S,} at timer; be defined as., — S;,_, — (¢; — ¢;—1) if i is good and

Sy, — Sr,_, — (b — ¢;—1) If i is not good. By standard arguments (see e.g. [RASO7b, Lemt]a 3
E(|O;|"~1) < cc. By considering the martingalg,, we then get
P(iis good ~ (1 — ! i 9, (4.8)

7

asi — oo. By considering the martingale? — nES?, we get
BE(rip1 — i) = Q') (4.9)
asi — oo. In particular,

219 C
P11 — 1 > i27209) < g (4.10)

while, from our assumption on the moments$fand Doob’s inequality,

- C
o 13¢] -
P(Tz-i—l <1 ) < pFECEE Y

(4.11)
We assume in the sequel tha(2 — 3)/2 > 2 and thatas(é3 + 1) > 5 + 3€ + ¢ (both these are
possible by choosing any < 2 so thatas3 > 3, and then taking large). We say that+ 1 is very good
if it is good and in addition; ; — 7; € [i¥?,i?T2¢+]. By (4.8), (4.10) and (4.11), we get
14+ €

P(iis very good ~ (1 — ; ). (4.12)

Declare an index excellentf 7 is very good and in additiord/,, occurs for alln € [r;_1,7;).

On the event that the firgt i’s are very good, we have that _; > CK+! andrg < CK3+26+0 —.
Tk, andS,, > K forn € [rx_1, Tk]. Letting M k denote the event that the fitkt— 1 i's are excellent,
and K is very good, we then have, for evety

P(UsLneiric i) Mic) < KD /P(Mg).
We now show inductively thaP(M ) > C/K'*€. Indeed, under the above hypotheses, we get
P(U¢ for somen € [rx_1,7x )| M) < K1TeH3t2ero—as(@+1) — pra+d—as+e(3-asf)

and thus, with our choice of constants and (4.8), we condluaeunder the above hypothesis,

1+¢€
K+1

We thus get inductively that the hypothesis propagatesmpditicular we get

P(Mg1[Mg) ~ (1

). (4.13)

P(iis excellentfori < K) >

> e (4.14)
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Further, if the firstK 4's are excellent (an event with probability bounded belowhyk *+€), we have that
Tk < Tx. Note that ift = C K¢#*+! then on the above event we have that by timat leastCt!/(3+26+9)
of ther;’s are smaller tham, and hences, > Ctc/(3+2¢+9) 'We thus conclude that, for &l large,

_ _ C
€a/(3+2e+96)
P(forallt <T,S; >t , andU; occurg > T o) -

Takingée large and3 close to2 (such that stillré(2 — 3) > 2), anda close tol, completes the proof. O

Proof of Lemmat.2 (sketch).Let
v = lim ﬁ #0
n—oo N
be the limiting direction of the random walk, and tebe a unit vector which is orthogonal to
In what follows we will switch from the regenerations in dit®n e; that we used until now, and
instead use regenerations in the directignvhose definition, given below, is slightly more generalntha
the definition of regenerations in the directiengiven in Section 1.

Definition 4.4 We say that is a regeneration time fdrX,,}°°_, in directionv if
o (X,,v) < (X;_1,v) foreverys <t —1.
° <Xt,’l}> > <Xt_1,1}>.
o (X,,v) > (X, v) foreverys > t.

We denote by (") the succesive regeneration times of the RWREin directionv (when dealing
with two RWRE’s X;(n), we will use the notatiomf’(")). The sequence> (1) — (") n > 1, is still
i.i.d., and withDv defined in the obvious way, the law ¢f(2) — ¢-(1) js identical to the law of*-(})
conditioned on the everi®”. The following lemma, of maybe independent interest, shihag up to a
fixed factor, the regeneration time (1) (and hence, alsty>(?) — ¢t*>(1)) inherits moment bounds from?").

Lemma4.5 Assumer > 10andE((tM)") < co. ThenE((X,..a), )% < oo and E((t*M)"") < oo
withr’' < r/4—1/2.

Proof. On the evenf{D")¢, definery = min{n > 0 : (X,,v) < 0} and setM = max{(X,,v) : n €
[0, 70]}. By [Szn02, Lemma 1.2} X,..1y, v) is (under the annealed law) stochastically dominated by the
sum of a geometric number of independent copied/of- 1. Hence, ifE[M?|(D")¢] < oo for somep,
thenE|(X,..a), v)|P < 0.

Fix a constank < 1/2(Et(M) AE(t(?) — (1)) small enough so thd2 + 2||v]|2)x < [|v]|3. Now fix
some (large) number. On the eveni > z, either

o tx®) >g
or
o Ut (k) > vk for somek > yx
or
o {|tW) —EtW®| > vk} or {|| X, — EXy || > xk} for somek > xz.

(Indeed, on the everdt/ > x with x large, the RWRE has to satisfy that at some large timer, (X, v)
is close to) instead of close tdjv||3t.)

Due to the moment bounds aft) andt(® — ¢(!), and the chosen value f we haveP(t*) >
x) < Cz~"/2. We also have

P —t®) > xk,  somek > xz) < C Y k" =Ca T,
k=xx
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and
P({|t®) — Et™| > xk} or {|| Xy — EX,0 || > xk}, somek > ya) < C > k7772 = Ca™ /21
k=xx
We conclude thaEM? < C + C [ aP~'a~"/*Tdx < o if p < r/2 — 1. This proves that
E{( X, )P <o ifp<r/2-—1. (4.15)

We can now derive moment bounds 6" (which imply also moment bounds ati := t"(2) —
t*(1). Supposé((t”(M)?") = co. Foranye” > 0 we can then find a sequence of integefs— oo such
thatP(t (") > ,,) > C /a2, T<" . Therefore, using (4.15) and the assumed moment bounds,

P(t" ) — B )| > 20/2)
> PE*® B W) > 2, Pt ) — 0O — (2, = DE(E)| < x@m) > Ca, P+

Therefore,

P

{oem) g [tv=<$m>} \ > 2m/2 0 [(Xpvam s 0) — E(Xporom ,0)| < X;pm)
C C C

- el - 2 = Tyl
Tin b T b,

(4.16)

if p’ < p/2 < r/4—1/2.0nthe other hand, the event depicted in (4.16) impliesahsdme time larger
thanz,,, the ratio(X;, v)/t is not close td|v||3, an event whose probability is bounded above (using the
regeneration time&™)) by

Cx,'?+C > kTP <Cal?
k=Cxpm
Sincel —r/2 < —p’, we achieved a contradiction. O

Consider temporarily the walk&; and X, as evolving in independent environments. We define the
following i.i.d. one dimensional random walk:

5= (30 (8) — 3, (59) ).

Setr’ < r/4 — 1/2. Forx andn to be determined below, we define the events

K2

B, = {tf’(”) ) o 1,2} ,

Cu = {| (Xt ™) = B ™)), 0)

<n“,i:1,2} ,

D, = {k max X8y = X)) u) | < i =1, 2} :
€n—nr,n

andU,, = B,NC,ND,. By ourassumptions, Lemma 4.5, and standard random waitkagsss,P (B¢ ) <
n=' P(CS) < n"' 2= and P(DS) < n~"' (21-%)/2 With +/ > 15/2, choosex > 1/2,n < 1/2
such that’'n > 3/2,r'(2k — 1) > 3/2 andr'(2n — k) > 3, to deduce thaP(U<) < n~ % for some
az > 3/2. (This is possible withy close tol /2 and«x close to2(n + 1)/5.)

Fix o’ € (0,1/2 — n) and define the event

A(T) = {foralln < T, S, > |nz"]}.
Note that there existi such that on the eveat(T) N1_; U, Xi[ko, T /2] N Xa[ko, T /2] = 0.
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From Lemma 4.3 we have th&® (A(T) N1_, U,)) > C/T'/?>%2  for some constant, > 0. By
ellipticity, this implies
PP (X1 [1, 7] 1 Xa[1, 7] = 0) > ¢/TV /202 (4.17)
uniformly over the starting points. (This estimate, whichsaderived initially for walks in independent
environments, obviously holds for walks in the same envitent, i.e. undeP, too, because it involves a
non-intersection event.)
Fix T, and let

T)= Z 1y, (=x20)1 (X1 (9) 0)e[T—0.5,T7+0.5)-

We want to bound the sum of

Claim 4.6
ZE oxw (G(t) # 0)] < CNV/2Haetl/r (4.18)

Proof. We define variable$y,, }5° , and{6,,}5°, inductively as follows:
P = max{tf’(l), t;’(l)} , 00=0
and then, for every, > 1,
On :=min{k > ¢, : G(k) # 0},  Yny1 1= max{71(6n), 72(0n)} ,

with
7i(k) = min{(X,v.om),v) : (X,o.0m,0) >k + 1}
We defineh,, = ¢, — 0,_1 andj,, = 9; — p. By (41;17), for everyk
P(jn > klj1s - jne1, h1,..., hn) > C/EM?Haz (4.19)
Let

K::min{n:iji>N}.

i=1
Let Y( ) = maxp_, [t v(ktl) _ l’(k)] be the length of the longest of the firdt regenerations of;,
i = 1,2, indirectionv, and setYy = max(Y; VAR Y, N)) Then

N
Z lepzo <K -Yn.

t=1

We see below in (4.21) tha (YY) < CNP/™ for p < 1. In addition, by the moment bound (4.19), for

anyt,
t
P(K>t <Z]Z<N><6Xp< Om)

=1
From here we get

ZE e (G(E) # 0)] < CNY2azt1/r+e" (4.20)

for everye” > 0. The fact thatlg was an arbitrary positive number allows the removad’bfrom (4.20).
(I
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In addition,G(¢) is bounded by the product of the length of th&; } regeneration containingand
that of the{ X, } regeneration containing So for allt < N,

Gt <™ vy,
and therefore, forany < r'/2,

B6()] < B B(¥)yr) < onoei
where in the last inequality we used the estimate

E((YZ—(N))QP) < AP 4 2pN/ y2p—1P(Ti(2) . Ti(l) > y)dy < AP 4 CNA2p—r/ 7 (4.21)
A
with A = N*/""_ Thus, with1 /g = (p — 1) /p,

E[G(t)] E[G(t) - a0l < (EG(t)P)? (B [Puxw (G(t) # 0)))"*
CON?" (B [Poxw (G(t) # 0)))/ . (4.22)

IN

Thus,

N N 1/q
ElEuuly] < Y E[GEH)] < ON*/W NP <ZE [P (G(1) # oﬂ) (4.23)
t=1
Using (4.18), we see that
E[E. ,Iy] < ON# TG+ Fa2)
By choosing2p < 1’ close tor’ andas small, we can get in the last exponent any power strictlydarg
thand/r’ +1/2 —2/(r")2.
O
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