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0 Introduction

The mathematical investigation of transport in disordered media has been an active field of
research over the last thirty years, rich in surprising effects and mathematical challenges.
In a number of cases the method of the environment viewed from the particle has proven
a powerful tool, cf. De Masi et al. [7], Kipnis-Varadhan [12], Kozlov [13], Molchanov
[17], Olla [18], [19], Papanicolaou-Varadhan [21], [22]. However basic models such as
random walk in random environment or Brownian motion perturbed by an environment-
dependent drift, when the random drift is neither the gradient of a stationary function nor
incompressible, have in essence not been amenable to this approach and remain to this
day mathematical challenges. An intensive effort to understand these models has been
launched in the last five years. Progress has been made, especially in the case of ballistic
behavior, i.e. when the particle has a non-degenerate velocity, see for instance [27], [32]
and the references therein. As for diffusive behavior, there has been some progress, cf. [4],
but overall the topic has been little touched. The present work is precisely concerned
with diffusive behavior, and investigates isotropic diffusions in random environment that
are small perturbations of Brownian motion. When the space dimension is three or more,
we prove transience and an invariance principle. The model we analyze is a continuous
counterpart of the model studied by Bricmont-Kupiainen [5]. However our strategy of
proof is different and we believe more transparent.

Let us first describe the setting in more details. The local characteristics, i.e. covari-
ance and drift, of the diffusion in random environment are bounded stationary functions
a(z,w), b(z,w), z € R, w € Q, with respective values in the non-negative d-matrices and
R¢, d > 3; the set Q is endowed with a group (tz)zere of jointly measurable transforma-
tions preserving the probability P on 2. We assume that for w € Q, a(-,w) is uniformly
elliptic, see (1.5), and that

(0.1) a(-,w) and b(-,w) satisfy a Lipschitz condition with constant K, cf. (1.4).

We denote with P, ,, the law of the diffusion in the environment w, starting from z, i.e.
the unique probability on C(IR, IRd) solution of the martingale problem attached to x
and

1 d d

cf. [26]. We let (X;)i=o stand for the canonical process on C'(IR, R?).

The random characteristics of the diffusion are assumed to have finite range depen-
dence, namely for some R > 0, under P,
O'(CL(I‘, ')7 b($7 ')7 S A) and U(a(yv ')7 b(y7 ')7 ye B) are independent

0.3
(0.3) when A, B C R? have mutual distance at least R.

Further they also fulfill a restricted isotropy condition, namely for any rotation matrix r
preserving the union of coordinate axes of R?,

(0.4) (a(rx, w), b(rz, W))mele has same law under P as (ra(x, w)rt, rb(x,w))meﬁd ,

we refer to Section 1 for details.



The main result of this article, c¢f Theorem 6.3, states that
Theorem. (d > 3)
There is an no(d, K, R) > 0, such that if

(0.5) la(z,w) — I| < no, |b(z,w)| < no, for allz € R, w e Q,
then for P-a.e. w,

% X under Py, converges in law to Brownian motion on

0.6
(0.6) R¢ with deterministic variance 02 > 0, as t — 00,
and
(0.7) for all z € RY, P, ,-a.s., tlim | X =00

In other words for diffusions in random environment that are small perturbations of
Brownian motion and satisfy the restricted isotropy condition (0.4), we prove transience
and diffusive behavior. Our results also apply to questions of homogenization in random
media, cf. Theorem 6.4, and show that

Theorem. (d > 3)

One can choose ny(d, K, R) > 0, so that when (0.5) holds, on a set of full IP-probability,
for any bounded functions f,q on R?, respectively continuous and Hélder continuous, the
solution of the Cauchy problem:

(0.8) { Oy ue = Leue + g, in (0,00) X R?,

ue‘t:O = fa

where for e > 0,
(0.9) Lo="1 i a--(w w>02+i 1b-<w w)a
. € 5 52 1) Z’ i = z 7 ;a 7

converges uniformly on compact subsets of R, x R, as e — 0, to the solution of the
Cauchy problem

(010> 8t Uy = O'2AU0 +9, m (0,00) X IR,d,
Uoli=o = f -

When b(-,w) = 0, cf. [22], [31], or when L is in divergence form, cf. [7], [13], [19],
[20], [21], the method of the environment viewed from the particle applies successfully,
and there is an extensive literature on invariance principles describing diffusive behavior
and applications to homogenization. There is also ample literature on analogous discrete
situations, cf. [2], [3], [12], [13], [14], [15]. On the other hand the case of general diffusions
in random environment of type (0.2) remains poorly understood, reflecting the genuine
non self-adjoint character of the problem and the absence of invariant measure at hand.
We do not know of any work proving diffusive behavior, and in the context of random
walks in random environment only of [4], [5].
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We will now give some description of the proof of our results. The main point appears
in Theorem 1.1. It states an induction step concerning the behavior of the diffusion in
random environment along a sequence of length scales L, ~ L((]Ha)n and time scales L2,
where a is a small positive number and Lj in a large enough number, cf. (1.14), (1.15).
Several assumptions are propagated from level n to level n + 1. A first assumption,
cf. (1.47), states that up to a IP-probability decaying like a large negative power of L,,
the following holds. On the one hand, for starting points z with distance const L, from
the origin, the displacements of the path of the diffusion in the environment w slightly
beyond distances of order L,, satisfy under P, , a certain exponential control, cf. (1.39),
and on the other hand the transition kernel at time L? of the diffusion:

(0.11) Ry (2, dy) = P, o[ X2 € dy]

is in a sense that we explain below “close” to the Gaussian kernel

2
R%(z,dy) = (2ra, L2)~4? exp{ _ =2 }dy, with

al12> 2an L2,
oy ~ EEO,w |:|XL%|2j|/(dL12’L) )

(cf. (1.22) for the true definition), after localization of z in a box of size const L, around
the origin. The way in which “close” is defined plays a pivotal role in this work. It refers
to the operator norm || - ||, for linear transformations on the space of bounded Holder
continuous functions of order 3 (some fixed number in (0, 3], cf. (1.13)), endowed with
the norm | - |(,), cf. (1.28), adapted to functions “living in scale L,,”:

f@) = W)l

|Z=2 |8
Ly

(0.13) |fly = sup |f(x)| + sup

zeR4 TH£Y

In essence “close” means ||xn.0(R, — R2)||» < const L, where Y, is a cut-off function
localizing z in (0.11), (0.12), within distance const L,, of the origin, cf. (1.38), and 6 > 0
is a fraction of 3, cf. (1.40).

A second assumption being propagated, cf. (1.48), states quantitatively the rarity of
traps by describing the domination of the tails under IP of certain variables measuring
the strength of traps in boxes of size L,, cf. (1.44), by the corresponding tails of i.i.d.
variables equal to 0 with overwhelming probability. The word “traps” refers to the fact
that in some pockets of the medium, the random drifts b(-,w) may concur to capture the
particle for a long time.

The third and last assumption entering the induction step, cf. (1.49), controls the
behavior of «,,.

Once Theorem 1.1 is proved, we show in Section 6 that when the local characteris-
tics of the diffusion satisfy (0.5), we can start the induction stated in Theorem 1.1. So
the induction assumptions propagate to all levels n, and with Borel-Cantelli’s lemma we
see that all boxes L,, within distance const L2, of the origin “behave well”. With the
Kantorovich-Rubinstein theorem, cf. [8], the Holder-norm estimates and the controls on
displacements of the diffusion, cf. (1.47), enable to construct “good couplings” between
the diffusion in random environment and Brownian motion with variance a,,, cf. Proposi-
tion 6.2. Since a,, converges to a positive limit, namely o2 of (0.6), the invariance principle
easily follows. The transience of the diffusion, cf. (0.7), and the homogenization result
(0.8), (0.10), also come as easy consequences of these coupling measures.
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Let us explain how the article is organized and briefly comment on each section.
Section 1 presents the setting and states Theorem 1.1. The proof of Theorem 1.1 occupies
Sections 2 to 5 of the article.

Section 2 propagates from level n to level n + 1 the controls on the displacement of
the path, cf. Proposition 2.2.

Section 3 propagates the controls on traps, cf. (1.48) and Proposition 3.3. Traps are
a serious matter in our problem because a pocket of size L has the potential, depending
on the realization of the medium, to entrap the particle for times of exponential order
in L. Hence pockets of relatively modest size may distort the diffusive behavior of the
particle on many time scales L2. This feature naturally affects the distribution of the
variables in (1.44) that measure the strength of traps. We are in fact mainly interested in
a small portion of the information contained in (1.48), namely ensuring that the variables
in (1.44) vanish with “overwhelming probability”, cf. (5.2), (5.3). But the inductive proof
requires a control on the tails of the variables in (1.44). To carry the tail domination
control (1.48) from level n to level n + 1, in essence we exhibit exit strategies for the
particle from boxes of size L, before time L2, which show that it is costly for the
medium to produce a trap at level n + 1 of a given strength. Depending on the strength
in question, the exit strategy that is employed varies, and we distinguish four distinct
regimes, (three regimes suffice when d > 4), cf. (3.20).

Sections 4 and 5 are devoted to the propagation from level n to level n + 1 of the
Hélder-norm controls contained in (1.47).

In Section 4, we perform “surgery” in a large box of size const L2, | around the origin,
which contains the relevant portion of the medium for our purpose. We investigate at a
finite depth n—mg—1, with mg a fixed number, cf. (1.17), this large box, remove all boxes
of size L, _;,—1 where bad behavior in the sense of (1.47) occurs, and in essence replace
them with good boxes. In this new artificial environment “after surgery”, we analyze the
diffusion at all the levels n’ between n—my—1 and n+1. We show that with overwhelming
IP-probability this environment not only does not develop in these intermediate levels bad
Holder-norm behavior with distance L2, from the origin, but produces a decay of the
relevant || - ||,,-norms faster than L_°, cf. Proposition 4.11. Wavelets, cf. [6], [16], turn
out to provide a powerful tool in the control of the || - ||,,-norms of certain random linear
operators, cf. Lemma 4.5 and 4.6. Collecting lemmas 4.2 to 4.6, one can read that
the relevant || - ||,s-norms mentioned above “contract like L;,ﬁ [BNA=BNE2=1) g6 also
Remark 4.7.

In Section 5, we compare at level n+1 the true environment with the environment after
surgery constructed in Section 4. The difference between them resides in a few defects of
size Ly —my—1. Thanks to the controls on traps in (1.48), we can assume that these defects
have no trapping power. Then using a strategy close in spirit to Section 2 of [25], we show
that the Holder regularity of the kernels of the diffusion in the environment after surgery
performed in Section 4, tends to repair the small defects of the true environment, cf.
Proposition 5.1. One can then recover with large IP-probability the bound || x+1,0(Rnt+1 —
RO, |lns1 < const L9, required to prove (1.47) at level n + 1, and the discrepancy
|atp1 — | is controlled in Proposition 5.7.

Section 6 as indicated previously applies Theorem 1.1 to the proof of the main Theorem
6.3, cf. also (0.6), (0.7), and to the derivation of an homogenization result, c¢f. Theorem
6.4 and (0.8), (0.10).



The Appendix collects some useful results on the norms |- |(,) on the space of S-Holder
continuous functions, cf. (0.13), and on the control of the corresponding operator norms
| - || with wavelets, cf. Proposition A.2.

The work by Bricmont-Kupiainen [5] was certainly a source of inspiration for the
present work even if we had difficulty to follow some of their arguments. Our proof albeit
using renormalization follows a different track. It may be helpful to highlight some of the
differences beyond the fact that in [5] the setting is discrete and here it is continuous.
In this article we introduce a family of Hélder-norms that play an important role both
for their contraction properties and the couplings they enable to construct. They also
motivate the use of wavelets. Further we directly compare the quenched transition kernels
of the diffusion, cf. (0.11) to certain Gaussian kernels, cf. (0.12), and not to the P-average
of the kernels in (0.11). This simplifies the proof. Our bounds on traps are conducted
in a different fashion, that is more in line with [29]. We do not carry in our induction a
decomposition of the kernels into “small field” and “large field”. The scales along which
we perform renormalization here grow faster than geometrically, and we perform surgery
at a finite depth, and compare what happens in true and “after surgery” environments.
Our proof also enables to have, unlike [5], a concise induction step stated in Theorem 1.1.
We believe this is a source of clarity.

Finally let us say a few words concerning the decision to work in a continuous rather
than discrete setting. It entails some simplifications because a number of scaling argu-
ments become natural and straightforward. But it also bears some technical intricacies
related to regularity questions at small scales. Decisive was perhaps the fact that some
of the calculations involving wavelets are more transparent and standard when one uses
wavelets on R?, rather than wavelets on Z?, cf. [16], §7.3.3.

Acknowledgements: We want to thank Erwin Bolthausen for many helpful conversa-
tions. A.-S. Sznitman also wishes to thank Stéphane Mallat for his explanations concern-
ing wavelets on Z.

1 Setting and main induction step

In this section we introduce notations for the main objects of interest and collect some
of their elementary properties. We also present in Theorem 1.1 the induction assumption
that will be propagated. The proof of Theorem 1.1 occupies the next four sections.

We let (e;)1<i<q stand for the canonical basis of R?, and d > 3 throughout the article.
We respectively denote with |- | and | - | the Euclidean and supremum distances on
R?. We let B(z,r) and B(z,r) stand for the open and closed Euclidean balls with center
z € R? and radius r > 0, and write Bo(z,7), Boo(z,7) for the corresponding | - |,-balls.
For A, B subsets of R? we denote with

(1.1) d(A,B) = inf{|z —y|; x € A,y € B},

their mutual | - |-distance, and with d. (A, B) their analogously defined mutual | - |-
distance. When U is a finite subset, we write |U| for the cardinality of U.

The random environment is described by (€2, A, P) a probability space endowed with
(tz),ere @ bi-measurable group of IP-preserving transformations. The diffusion matrix and



the drift of the diffusion in random environment are stationary functions a(x,w), b(x,w),

r € RY, w e Q, with respective values in the space M 1 of non-negative d-matrices and
R¢:

1.2 alz, t,w) =alz +y,w), bla, t,w) =blx+y,w), for z,y € R, we Q.
(1.2) (z,tyw) = a( ) v

We assume that these functions are bounded and uniformly Lipschitz, i.e. there is K > 1,
such that for z,y € R, w € Q,

(1.3) |b(x,w)| + |a(z,w)| < K,
(1.4) b(x, w) = by, w)| + |a(z, w) — aly,w)| < K|z —y|.

Further we assume that the diffusion matrix is uniformly elliptic, i.e. there is a v > 1,
such that for z € R, w € Q:

1
(1.5) — I <a(r,w)<vl.
v

As mentioned in (0.3) the local characteristics of the diffusion satisfy a condition of finite
range dependence. Namely for A C R?, we define

(1.6) gAza(a(x,-), b(x,-); xeA),

and assume that for some R > 0,

(1.7) G4 and Gp are independent under IP whenever d(A, B) > R.

Finally we assume that the local characteristics of the diffusion satisfy the restricted

isotropy condition stated in (0.4).

We recall that (X;);>o denotes the canonical process on C'(IR, R?%). We write (F,)i0
and (6;):>¢ for the respective canonical right-continuous filtration and canonical shift on
C (R, R%). We also write Hp and Ty for the respective entrance time of X in the closed
set B C R? and exit time of X from the open set U C R%:

(1.8) Hg =inf{u >0, X, € B}, Ty =inf{u >0, X, ¢ U}.

In view of (1.2) - (1.5), for any w € Q, € R% the martingale problem attached to
(a(-,w),b(-,w),x), (or alternatively to L in (0.2), and x) is well-posed, cf. [26]. The
corresponding law P, , on C(RR., ]Rd), unique solution of the above martingale problem,
describes the diffusion in the environment w and starting from z. We write F, , for the
expectation under P, . Under P,,, (X,) satisfies the stochastic differential equation

(1.9) { dX; = o(Xy,w) dB; + b(Xy, w)dt,

Xo ==z, P,,as.,

where o(-,w) = a(-,w)? and J3. is some d-dimensional (F,)-Brownian motion under P, .

The laws P, are sometimes called “quenched laws” of the diffusion in random envi-

ronment. We also need the “annealed laws”, P,, z € R?, that are the semi-direct products
on Q x C(Ry,RY):

(1.10) P,=PxP,,.
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We denote with FE, the corresponding expectations. These laws typically destroy the
Markovian property of (X,) but restore translation invariance and isotropy:

(1.11)  the law of (X, +y) under P, equals that of (X,) under P,,,, for z,y € R¢,
and for r a rotation matrix preserving the union of coordinate axes of R¢, and = € R,

(1.12)  the law of (rX,) under P, equals that of (X ) under P, .

We now turn to the description of spatial scales. We first choose

(1.13) 3e (0, ﬂ ,

that will later appear as an exponent of Holder-continuous functions, as well as
] i (1+3)

(1.14) ae(O, To00d , and ¢g > 1, with 2 ¢qlog 1—|—§ > 1.

Then for Ly > 10° ', an integer multiple of 5, we define L,,,n > 0, by induction via:
(1.15) Lni1=4{, L, with ¢,, =5[L%/5], n >0,

and by convention we set L_; = 1. We also need the auxiliary scales

(1.16) D,, = L, exp{co(loglog L,)*}, D,, = L, exp{2co(loglog L,)?}, n>0.

The proof of Theorem 1.1, when deriving controls on certain Holder-norms at scale L, 1,
requires one to work at depth mg + 2 in scale L,,_,,,_1, see Sections 4 and 5, with my > 2
determined by

(1.17) (1+a)™ <100 < (1+a)™ .

We can now introduce the probability kernels that enter the renormalization scheme. To
this end we first define

(1.18) X =sup | Xy — Xo|, u>0,

s<u

as well as the (F;)-stopping times describing the first time X, travels a distance D,, from
its starting point:

(1.19) T, =inf{fu >0, X; > D,}, n>0.

We can then consider n > 0, w € Q, the probability kernels on R®

(1.20) Ry (x,dy) = Ppo[X12 € dy], Ru(x,dy) = Py u[Xi2a1, € dyl.

In the renormalization scheme we compare R, and R, to a Gaussian probability kernel
RY that we now define. To this end we denote with 7, the d-dimensional Wiener measure
starting from x € RY. Then for n > 0, we set

(1.21) R(x,dy) = W, [Xu, 12 € dy], RO(x,dy) = W X (an12)a1, € dy],
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where the positive constant «,, is such that:

(1.22) Eol| Xi2nm, !l = E™| Xo,12 2] = i dL2, n > 0.
To compare R,, and ﬁn to RY, we will use the kernels

(1.23) Sy =R,—R’, S, =R,—R%, n>0,weq.

The local drift and the compensated second moments at level n at site x in the environment
w are defined via:

dulw.w) = [ (=) Balwr.dy) = [ (v =) Sy, dy).

(1.24) N
Waw) = [y=a)i @), Sule.dy). 1 <05 < d.

In view of the translation invariance and isotropy of X under the annealed measure, cf.
(1.11), (1.12), and of (1.22), we see that

(1.25) E[d,(z,w)] =0, EF,(z,w)] =0, for n >0, z € R".

Note also that for z € R%, n > 0,

(1.26) Sn(z,dy) depends in a Gg, 5 y-fashion on w,

(see (1.6) for the notation), and in particular

(1.27) dn(z,w), Yn(z,w) are Gg, p \-measurable .

The finite range dependence property (1.7), together with stationarity and (1.25) yields
the fact that (d,(z,w), Yn(z, w))xev are i.i.d. centered variables under IP, whenever V is

a collection of points of R with mutual distance at least 2D, + R. This will be especially
useful in Section 4.

In what follows we will use various norms. For p € [1, 00|, we denote with |f], the
LP-norm of a measurable scalar function f on R?. We also consider as already mentioned
in (0.13) the Holder-norm of order 3, cf. (1.13), in scale L,:

I‘ J—
(128) o = sup @)+ 22 sup LEDZIWN s g,
zeR? T#y |LE - y‘
Note that for f, g scalar functions on IR%:
(1.29) 1£9lm) < 1l lglny, m = 0.
The operator norm corresponding to | - |(») is denoted with | - ||,
(1.30) [Alln = sup [Af]@),

[flny=1

for A a linear operator mapping the space of Holder-continuous functions of order (3 into
itself.



In Section 4 we need to compute in an efficient way the ||-||,,.+1-norm of certain operators
entering the linearization of S, expressed in terms of n, for ng — mg — 1 < n < ng, cf.
Theorem 1.1 for the notation. This is done with the help of wavelets. Namely we choose a
scaling function ¢ and a mother wavelet ¢, which are compactly supported on IR, of class
C*, cf. Daubechies [6, Chapters 5,6], Mallat [16, Chapter 7]. In particular o, have unit
L?-norms and [ 1(t)dt = 0, cf. [6, p. 153], (intuitively one can think of the Haar wavelets
o(t) = 1p(t), ¥(t) = 1[0’%)(15) - 1[%,1)(15), which of course do not fulfill the smoothness
assumption we require). Attached to this choice we have a multiresolution approximation
of L*(IR), namely a decreasing sequence of closed subspaces V;, j € Z, of L*(R):

(1.31) e cVocVicVoCc Vo CVgoon,

with dyadic scaling sending one space into the next, V_,, = L?(R), V,, = {0}, and
o(-— k), k € Z, an orthonormal basis of Vi, ¥(- — k), k € Z, an orthonormal basis of the
complement of V; in V_;. Since we are interested in functions on R?, we write

(1.32) b =, h =1,

and for a € {0,1}¢ and z = (21, ..., 2q4) € RY, we define:
(1.33) Oo(x) = Ony (1) .. Oay(x4),
as well as for ¢ € Z, p € Z%:

(1.34) Onrp(a) = ea@ - p) .

In this way given any “top scale” 270, we have an orthogonal basis of L?(IR%) made of
Onip, ¢ < Jo,p € Z¢, with o # 0 if £ < jo, and any f € L2(]Rd) can be expanded as

(1.35) fla)y=" % C‘Zﬁé,pea@ _p>'
0<jo,pEL?
a#0, for £<jo

For our purpose the interest of this expansion stems from the fact that with an adequate
choice of jy (i.e. 2 ~ L,) the norm |f|,) is comparable to sup{|c;2£’p|25(j0_£); ¢ < o,

p €X' a#0for £ < jo}. This leads to effective estimates on || - ||, ¢f. Proposition A.2

from the Appendix. These controls will be very useful in the proof of Lemmas 4.5 and
4.6.

To formulate the Holder-norm controls that enters the induction assumption of The-
orem 1.1 we need certain cut-off functions which we now describe. We consider the
0, 1]-valued radial function:

(1.36) x(@)=1A (2= |z|);, 2 € R,

so that x = 1 on B(0,1), x = 0 on B(0,2)°. For u > 1, z € R% n > 0, we also consider

(1.37) Xu(*) = X(;), as well as

(1.38) Xna() = Xaovaz, (= 2) = x(5 72



Of special importance for us will be the control of the norm ||xy. . §n||n to measure the
closeness of R, to RY, for starting points in a neighborhood of size const L,, of z, (we
incidentally mention that ||Xx,, . Sy, is finite, cf. Remark 2.6.2)).

We are now ready to describe the induction assumption we will propagate. Part of
the induction assumption, cf. (1.47), expresses the fact that with “high probability”,
1Xn.0 Snlln is “small” and for starting points |y| < 30v/d Ly, the tail of X, under P,
has exponential decay. More precisely we introduce for w € €2, n > 0, the set
B.(w) ={z € L, Z% for |y— x| <30VdL,, P,.[X}, >v]<e P,

(1.39) N
for v > D, and ||xnz Sulln < L%},

with 0 a number slightly larger than g, specifically:
(1.40) 5=23
: =0

We will in particular propagate an upper bound on P[0 ¢ B, (w)], cf. (1.47).

Another part of the induction assumption involves the control of traps in the medium.
Forn >0, z € L, Z¢, we write

(1.41) Cula) =2+ L[0.1)%, Clfa) =+ Ly~ 1.2)".

3Ly
n 2

C/

n

() —

Fig. 1: The boxes Cy(z), C)(x), Cp(x)

We then chop each of the 2d faces of dC, () into 51@~Y closed (d — 1)-dimensional cubes
of side-length L, /5, see (1.15), and denote with C,,,(z), 1 < v < 2d 51 the resulting
closed d-dimensional cubes obtained by “expanding” in the outwards normal direction to
JC,(x) the above mentioned (d — 1)-dimensional cubes, (with some specific labelling of
the collection of cubes expressed by the index ). We clearly have

(1.42) Chr(2) C Cl(x), for 1 <y <2459 Y n>0 2¢€L,Z".

To measure the possible presence of traps in C,(z), we want to control how well the
diffusion starting in the smaller box C,,(z) travels to the boundary boxes C,, - (z) without
leaving the larger box C! (z), within time L2. To this end we pick a number

(1.43) ¢ €(0,2), with ¢'>

1 d+1
_§+d3 ,
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see also (3.85), and introduce for n > 0, x € L, Z%, A C Cy(x), 1 < v < 2d519Y, the
random variables measuring the presence and strength of traps:

(1.44) Jna,a(w) = inf {u > 0; ;Ielg Pyu[Hep @) < Lo ANTon@w) > e L},

n

where ¢; € (0, 1) is the constant depending on d and v, see also above (3.67):

1. 1 4v 1 1174
=7 1nf{Wm[Xu€B,U<T(_4_%,§_g)d], uc [E7E:|7 T € [_TO’E] )

d
and B is a closed cube with side-length %, contained in [— é, g] } > 0.

We call n-admissible family, for n > 0, an arbitrary collection

(tg, Ay, Va)wea, Where A is a finite subset of L, Z¢, and for x € A,
uy >0, 7, € {1,...,2d5% Y} and A, C C,(z) is a union of boxes
Cr-1(z) (with the convention L_; = 1, when n = 0, cf. below (1.15)),
such that dy(Az, Ay) > 10d Ly, 1, when z # 2.

(1.45)

In the induction step we will propagate an upper bound on IP[ for x € A, J,, ; 4, ~, > U]
for n-admissible families that will show that with overwhelming probability the variables
in (1.44) vanish. We are now almost ready to state the main Theorem 1.1. We just
need to introduce two numbers My and M that will respectively govern the estimates on
P[0 ¢ B,(w)] and on the tail of the variables in (1.44).

(1.46) My > 100d(1 + a)™*? M > 1000M, .

Throughout this article we denote with ¢ a positive constant varying from place to place
that solely depends on d, K, v, R, 3, a, co, ¢, ¥, ¢, Mo, M, cf. (1.3), (1.4), (1.5), (1.13), (1.7),
(1.14), (1.32), (1.43), (1.46). Any additional dependence of the constant will appear in the
notation. So for instance if u is a parameter, c(u) denotes a positive constant depending
solely on u,d, K,v, R, 3, a, co, o, ¥, (, My, M.

Theorem 1.1. (main induction step)

There are positive constants ca, ¢, such that for Ly > ¢, for ng > mo+1, (cf. (1.17)),
if for all 0 < n < ny,

(1.47) P[0 ¢ B, (w)] < L,

and for all n-admissible families (U, Ay, Ve )zeAa,

P[ for allx € A, Jyz 4, = U] < LM Z”’GA(MH), with

1.48 _
(148) M,=M I (1-:2).
0<j<n log L;
and if, with § as in (1.40),
(1.49) ) oo <o <2, 0<n<ng,

then the estimates (1.47), (1.48) hold with ng + 1 in place of ng, and

_ 9
(1.50) Qg1 — | < Lt 719
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The proof of Theorem 1.1 is the scope of the next four sections. The crucial control
s (1.47). In Section 2 we propagate the localization estimate contained in (1.47), that
pertains to the tail behavior of Xz% . In Section 3 we propagate the control on traps that
appears in (1.48). It is in fact used in a rather special case, at the beginning of Section 5,
cf. (5.3). As mentioned in the Introduction, the more detailed (1.48) enables the induction
proof to function. In Section 4 we perform surgery on the environment at scale L,;, with
ny = ng —mp — 1, and remove possible defects within distance const L2 ., from the
origin, which (in essence) belong to L, Zld\Bn6 (w), and show that with high probability
this modified environment behaves very well up to scale L,,,1;. In Section 5 we compare
the true and modified environment, and show with the help of the smoothness estimates
of Section 4, and the control on traps from (1.48) and Section 3, that one can repair the
defects possibly present in the true environment.

We have already discussed our convention concerning positive constants above Theo-
rem 1.1. We will use in the sequel the expression “for large Ly” in place of “when Ly > ¢”.
We will recurrently use the shorthand notation

(1.51) tn = exp{c(loglog L,)*}, n > 0.
From now on we assume Ly > 10, large enough so that
(1.52) Ly <Dy, <Dy < Ly, forn>0.

We close this section with some bounds on the Brownian semigroup and on the semigroup
of diffusion in random environment. We write (P;);>¢ for the Brownian semigroup and
pi(z,y) for its transition density so that

2
(1.53) pilw,y) = (21)~% e p{ - }o 1> 0,0,y € R, and

(1.54) /pt y)dy, t >0,
(z), t =0, with z € R?, f bounded measurable .

Note that P, t > 0, contracts the | - |(,)-norm and
(1.55) | Pl =1, for t > 0.

Also for v = (71,...,7¢) a multi-index (i.e. 7; > 0, integer), f bounded measurable,
z €R% t >0, one has

(1.56) D (R @) < D exp { - AESR AT p g1 ]

with |y| = 71 + - + 74, (the estimate readily follows from the identity: D) p(z,y) =

(—1)P =5 Dg(L2), with q(z) = - o).

The semigroup of the diffusion in the environment w

(1.57) (P f)(@) = Epu[f(X1)], t > 0,2 € R, f asin (1.54),

12



thanks to (1.3) - (1.5), is known to admit a density p;.(z,y), cf. Friedman [9], p. 24,
which satisfies for 0 < ¢t < 1,z,y € R%:

c _ 2
(1.58) Drw(T,y) < s exp{ _cly t x| }7
2
c _ 2
(1.59) | Da pro(z,y)| < = eXp{_—C|yt : }
t 2

As a consequence we can bound the norm || P;||pe— @) of P; between L>(R%) and the
space of 3-Holder-continuous functions endowed with the norm | - |¢).

Lemma 1.2.

(1.60) | Pl poemimy < ¢ L8, for t>1,n>0,w e Q.
Proof. First note that for s > 0,w € €,

(1.61) |Pewofloo < 1floo -

Then with (1.59) and the above we see that

_ B
(162) [Pl f@) — Pro f@)] < el — ] A1) |l < eL3(| 2] A1) 71
We thus find

and writing for ¢t > 1, P, = P1,, P;—1 ., the claim (1.60) now follows from (1.61), (1.63).
O

2 Localization estimates

We keep the notations of the previous section and in particular of Theorem 1.1. We
begin here the proof of Theorem 1.1, the principal aim of this section is to propagate to
level ng + 1 the tail estimates on X* implicit in (1.47), see also (1.39). This is achieved
in Proposition 2.5. We also derive controls in Proposition 2.5 which in particular imply
that S,,+1 and Sy, 41 are typically close in || ||,,+1-norm. We begin with some additional
notations. With K from (1.3), (1.4), and n > 0, we define:

(2.1) T, = (—2K L? 2K L?)?,
and also introduce for w € Q, the modification of B, (w) in (1.39), see (1.16) for notations:
(22) Bu(w) = {z € L, Z% for |y — x| < 30Vd L,, P,.[ 72 >v] <exp{ - Din}’

for D, <v < ﬁn, and ||Xn.z §n||n < L;‘S} )

Note that for n > 0, = € L, Z%, the event {z € B,(w)} unlike {z € B,(w)} has a local
dependence:

(2.3) {z €B,(w)} e OB (w.Dnt30vd L) (S€€ (1.6) for the notation).
In the terminology introduced above (1.51), and the notations of (1.22), (1.24), one has

13



Lemma 2.1. There is a constant ¢ > 0, such that for large Lo, for any w € 2, n >0,
with oy, < 20, € Ly 7% with ||Xn.eSnlln < L%, and |y — x| < 10Vd L, :

(24)  |du(y. )| ST Ly, [y, w)| < Fo Ly, with By = exp{@(loglog Ly)*}

Proof. For y as above and 1 <4, j < d, we define, cf. (1.37),

(2.5) fi(2) = xp, (== y) 2 ana

(2.6) fii(2) = fi(2) fi(2).
Observe that

(1.29)

(2-7) |fi|(n) < Ky, and |fi,j|(n) < Kp.

Further using that fi(z) = (£2); for [z —y[ < D, and Gaussian estimates, see (1.53),
(here the control on «,, comes in play), one finds that

28) |2k )| <o

n

L) (G f)w)| < e

Since Xno(y) = 1, cf. (1.38), and ||xne Snlln < L%, cf. (2.2), the claim now follows (Lg
is large). O

We now turn to the localization estimates.

Proposition 2.2. For large Ly, if for n >0, (1.47) and % < a, < 2v hold, then

(%

Dn+1
1 v

}, for v > Dn+1}

]P[for ly| < 30Vd L1, Pyyw[Xz2+ > ] < eXp{ —
(2.9) "

Proof. Using the exponential inequality for martingales, cf. Revuz-Yor [23], p. 145, for
large Lo, n > 0, w € Q, v > 2K L2, and arbitrary y we find

cv
2
Ln

(2.10) P, [XZ%H >v] <cexp{ - 21} < cexp{—cv} <exp{— Y }.

+ DnJrl

Hence for proving (2.9) we can restrict v to
(2.11) Dy <v<2KLZ,,.

For such v and w € €2, we define

d * u v
(212)  Buuw)={z € L, Z" P,u[X}» >u] <exp{ — D_n}’ for Dy <u < oo,

and |d,,(y,w)| < F, L%, for |y — 2| < 10V/d L, },

where %, appears in (2.4). As in (2.3) the local dependence of the event {z € B, ,(w)},
for x € L, Z%, is expressed by

(2.13) {z € B.(w)} € gﬁ(m,(l—go\/ﬁn)—HO\/ELn)'
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In particular with (1.7) and (2.11), we see that when L, is large,

for x, 2’ € L, Z%, with |z — 2’| > {z € B, »(w)} and

{z" € B,,,(w)} are independent .

40’

(2.14)

We then introduce, see (2.1):
(215) Qo ={weQ, T NL, Z N B, (w) C B(wo, 70) for some zg € Ly, Z"} .
Observe that when Ly is large, n > 0, v as in (2.11),

P[Q¢ ] <P[T,41 N L, Z N B, (w) has diameter > - —VdL,] <
(2.16) IP [for some z, 3’ € Tp4q N Ly, Z°, with |z — 2| > E’ x and ' ¢ Byo(w)] <
(¢ L2/ L) Ly < L, L;2¥0
where we have used B, (w) C B,(w), and hence with (2.2), (2.4), Ba(w) C By (w), as well

s (1.47) and (2.14) in the last step. We now pick some w € €, ,. We can find some
zo(w) € Tpyy N Ly, Z%, such that

(2.17) Tt N Ly Z' N B;, () € B(zo(w), =) -

We introduce the successive entrance times R; and exit times D; of X in B(zy, %) and
out of B(xg, 55), (see (1.8) for the notation):

R, = HB(J;(), , D1 = TB ) © 931 + Ry, and fori>1,

(2.18)
Riy1=Ryo0p, + D;, Diyy = Dl ofp, + Dy,
so that

We first discuss the more complicated case where

(220) za(@)] < -

Then for |y| < 30v/d L1, we write for large Ly,
(221) Pl ZiH > v] < Byl EELH >v, Ry < Li+1] + wa[TB(Q < Ry A Ln-}—l]

where we have used that P, -a.s., T s ,) < L2, on {X: >w}. To bound the first
’ n+1
term on the right-hand side of (2.21), we consider on the event {X¥, >wv, Ry < L2}
n+1

the last exit time of B(xo, j5) before T0,3 ) (< L?,,, P,,-a.s. on this event), and the
integer part of this time. We then find:

2
Py,w[XziH > v, By < Ln—}—l] S

P, [for some k < L2, sup |X,— Xi|> —} +

(2.22) u€lk,k-+1] — 100

Py,w[ U ({Xne K(z)}n 9;1{TB(07%U) < R, A Liﬂ})}, with

m<Ln+1

m integer and K (zq) = 0By, :_0) + B(0, 1%0) :
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Using an exponential inequality as in (2.10) to bound the first term on the right-hand
side of (2.22), we find:

Pu[Xj2 2v, Ry < L7 ] <
(2.23) CLiH(exp{ v’} + sup P, [TB(O <RiNL;]).

z€K(zo)
For convenience we write K, = {k > 0;kL2 < Ry N L2, AT7,,,}. Keeping in mind the
last term of (2.21), we write for |z| < 30v/d L,11, or z € K(zo):
(2.24
Pz7w [TB(O 3 < Rl N Li+1:| S
v
P, . [for some k € K, SUDyepr2 (kt1)12] | Xy — Xpr2| > 100} +

~—

P, . [for each k € K,,, SUPye[kL2,(k+1)L2] and

ma
(2.12),(2.17)

cl? exp{ — 100D —1 —l—Pzw[for each k € Kn, sWDyeppr2, (i) |1 Xu — Xzz| < 100,
v
aundXRl/\L2 Ao, 5} <
cl? exp{ — 1OOD } + Pzw[for each k € KCp, SUDyeperz (ky1yr2] [ Xu — Xirz| < 100,

and for some m € Ky, [ X2 — 2| > 10}

We now have to bound the last term of (2.24). To this end we will use an exponential
estimate. But we first need the following

Lemma 2.3. If Z is a random variable on some probability space such that
(2.25) Ele?] <2, Ele?] <2 and

(2.26) E[Z] =0,

then for L > 1,

(2.27) E[exp{ s? %}] < QUL

Proof. For o € (0,1] and u € R, one has the inequality
(2.28) a 2™ —1—au)<e'+e -2,

that can be verified by expanding both sides in Taylor series and using that 3 ;- e uk_lr =
2 k>2,0dd u]g_llc Hence we find

(2.29) e <1+aZ+a?le? +e? 2.

Substituting a = 4/ 10%2 L™, and taking expectations we find with (2.25), (2.26), that the
left-hand side of (2.27) is smaller than

1g2 eXp{lOLg2}<21/L2

This proves (2.27). O
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The desired exponential estimate comes in the next lemma where 3" plays the role of
Xonr2 in the last term of (2.24). For u > 0, we write

(2.30) Po(-) =[—uV ] Au.

Lemma 2.4. There is a constant ¢ such that for Ly large, if v € B, ,(w) and |y — z| <
10v/d L,,, then for any e € %4, with |e| =1,

—2
231) Epofexp {5 (v (Xiz =) - €) = Byt (Xiz = 9) - 0)]] }] <2
Proof. In view of Lemma 2.3, we only need to prove that for some ¢ and all e as above:
(2.32)  Ey. [eXp {Din [@bﬁ (X2 =) -€) = Byt (Xuz —y)- Q)H }] <2
To this end note that with a small enough ¢ one has

Ey/,w[exp{Din wﬁ ((XL% _y/) . 6)}} <1 +Ey’,w[(XL$L N y/) e>0,

15N X2 —y)e c . (2.12) 166 c u
(2.33) /0 Do exp{D—n u}du} < 1+/0 N exp{(c—l)D—n—i-l}du

§1+ée§\/§.

Then observe that when L is large:

| (1:21)

By wltrs (Xez —¢)-e)] = daly/,w) - e

By o[t (Xez =) - €) = (Xezar, —3/) - ]|

(2.34)

and since the integrand vanishes when T, > L2, (because 165 > Dy,),

% ,, 21),212) D,
= 100 Py olT, < L) < cLy iy exp{ - D_n}

(1.15),(1.16)
< cexp{2(1+a)log L, — exp{cy(loglog L, )*}} .

Moreover with (2.12) we find:
(2.35) \dn (v, w) €| <R L1

Hence where Ly is large, combining (2.33) - (2.35), we obtain (2.32). This concludes the
proof of Lemma 2.4. O

With the same ¢ as in (2.31), introducing for e € Z“, with |e| = 1, and m > 0, the
notation

(2.36)  Eomn =
T (e (X = Xig) - €) = By ol (Xaz = X0) - €)]) }

n 0<j<m

exp

t,D
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we see as an application of (2.31) and the Markov property that for m < (2, |z| <
30Vd L.y or z € K (), e as above:

(2.37) E..mL2 < By ATr, ,Em] <2.

+17

Note also that for large Lo, for 0 < m < (2, P, -as. on the event {|X,,12 — z| > &

10
m L} < Ry ATz, and for 0 < k < m, sup,eprz b2y [ Xu — Xirz| < 155}, for some e
as above, with (2.12) and (2.34), (2.35):

Eom 2 &xp {é b 2 [(Xgrnes = Xjra) e — 260 L] }

ntn 0<j<m

= e {55 (g~ L)} 2 e {7500
_exp{énDn Tod kn s L, > exp énDnU’

using (1.14), (1.40) and v > D41, in view of (2.11), in the last step. It now follows
from (2.37) that the last term of (2.24) is smaller than 2/} exp{—;%-v}. Hence we
see that when Lg is large the left-hand side of (2.24) is smaller than cf? (exp{—+=%-} +

) 100D,
exp{—gn o v}).

Using this bound in (2.23) and on the last term of (2.21), (recall that |z| < 30v/d L, 41
or z € K(z¢(w)) in (2.24)), we obtain for large Lo and |y| < 30v/d Ly 1:

iy, 24 = el (ool et} + B o] - )+ ew{ -5 ))

100D,
10v
(2.38) < expy - p—

where we have used in the last step that for large Lg

Do (1.15),(1.16) oo lon I | e ) s 2
(2.39) nDh exp{co[(loglog L, +log (1+3))" — (loglog L,)*] }

exp{2colog (1 + g) loglog Ly, } ,

>
>

with 2¢ylog(1+ %) > 1, by (1.14), as well as v > D,, 41, in view of (2.11).

We now turn to the simpler case where unlike (2.20)

(2.40) |20(w)| > g

Then for |y| < 30Vd Ly,41, Ly being large, we write:

. 10
(2.41) PrulXia 2 0] < BuulToog) < RunLiy] <exp{ = 57},

repeating similar bounds as in (2.24), (leading to (2.38)). We now define, cf. (2.15),

(2.42) Q, = ﬂ Qn10m Do s

m>0;10" Dy 11 <2KL2 |

and observe that for w € Q,, v € [Dy11,2KL2 1), |yl < 30Vd L4,

(2.38),(2.41)
(2.43) Py,u,[)g’z2+1 > 0] < py’w[Xz2+1 > 0] < exp{ _ 10vm} < exp{ o }
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with the notation 10™ D,, .1 = v, < v < 10v,,.

In addition from (2.16) we deduce that when Ly is large

(2.44) P[] < ([mg (MTL%“) / 1og1o} v 1) cLid [-2Mo < L p-ao

n+1 - 10

since 2My(1+a)™! > My+4d +1, by (1.14), (1.46). Combining (2.10), (2.43), (2.44), we
see that (2.9) is proved. O

We will now conclude this section with an estimate on || xpn.e(Sn — Sn)|l that will be
repeatedly used in the sequel. We refer to (1.23), (1.30), (1.38) for the notations.

Proposition 2.5. Given x° as in (1.51), for Ly large, for anyn >0, w € Q, ifz € L, Z°
is such that for |y — x| < 30V/d Ly,

x Dy, —K0
(245> Py,w[ L2 > 7i| <e "
then there exists a k, as in (1.51) such that
(2.46) X, (S = Sl < €7

Proof. We use the shorthand notation

(2.47) A, =S5, —S,, so that
1.23
Ang(z) "2 B [9(X12) — 9(Xiznn,), Tu < L2].
Note that for f with |f|q) < 1, and z,y as above (2.45),

5, (245)
(2.48) A, fy)] 2P, [T, < Li] < 2e .

So when L, is large, we find that for y, 4’ in B(z,21vd L,), with |y —y/| > e~*",

—Kn,
€ )

(2.49) A, f(y) — A, f(y)] < 2670 < LY

n

y—y'|°
L

n

/
o < ’y—y
< T

(see above (1.51) for the convention we use, and we are only interested in y, y" € B(z, 21Vd L,,)
because Xy, is supported in B(z,20v/d L,), as follows from (1.38)).

We now consider for «,, as above (2.49),
(2.50) ly —y'| <e ",

and write

A, fly) — Ay f(Y)] < a1 + ag, with
(2.51) ar = |Ey’,w[f(XL%/\Ty/) — [(Xrzam)l
az = |Eyu[f(X12) — f(Xrzar,)| — By ol f(X12) — f(Xz2a7)]l
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and Ty, = Ty, 5, Ty = Ty, ) in the notations of (1.8). Writing

(2.52) T=T,AT,,

it follows from the strong Markov property at time 7, with hopefully obvious notations,
that

a; < ‘Ey’,w [Ty’ =T7< L12’L A Ty7 EXTy,7W|:f(XTy/\(L%—T)) - f(XO)H ‘ +

(25?)) ‘Ey’,w [Ty =7< L?L A Ty’a EXTy ,w[.f(XTy//\(L%—T)) - f(XO)H ‘

C by 4 by, (the inner expectations do not integrate 7).

We will now bound by, by being handled similarly. To this end we consider 2z’ € dB(v/, En)ﬂ

B(y, Dy), (2 plays the role of Xr,), 0 < u < (L2 — 1), and H the half-space {z €
R% z - ¢ > v}, with ¢ the unit vector in the direction 2’ — 3/, v = 2/ - £+ |y — y|. So
d(H,B(y', D)) = |y — ¢/| in the notation (1.1), and B(y, D,) € H°. We will use the
shorthand notation, cf. (1.8), H = Hy, and note that

Ez’,wHXTy/\u - XO‘IB A 2] S

(2.54) , , ,
2Pz’,w[H > |y _yH +Ez’,w[H S |y _y|7 |XTy/\u _X0| /\2] .

To bound the right-hand side of (2.54), we first note that under P,/ ,, (X — Xj)- ¢ admits
the semimartingale decomposition

(2.55) (Xs—Xo) - 0=M;+ A;, s >0,
where in view of (1.3) - (1.5), for some ¢ > 1,

(2.56)

ol

s<(M)s <cs, |As|<cs, s>0.

Observe also that with ¢ as above,

(2.57) P as, T,<H<H Cinf{s >0, M, > cs+ |y — y|}.
As a result we find that

PoyH<|Y —yl] > Pou[H< |y —y]] > Pou[ sup M, > (c+1)|y —yl]

s<|y’'—y|

scaling ni
>W| su B, > (c+1 ="W/|sup B > cly — |2
(2.58) [S oy (c+1)] [sglf ly —y'|2]

1
c|yl_y‘§ v2 d/U
=1—/ e >1—cly —y|7,

1
—cly'—y|2 A

where B, denotes the canonical one-dimensional Brownian motion, W the Wiener mea-
sure, and we have used time-change together with (2.56). This yields a bound on the
first term in the right-hand side of (2.54). For the second term we note that with ¢ as in
(2.56), we can define

(2.59) H =inf{s >0, M, = (c+ 1)y —yl},
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and P, -a.s. on the event {H < |y’ — y|}, one has T, < H < H, and hence

(1.9)
(2.60) E.o[H <y —yl, | Xryn — Xol” A2] <
s B
C|y/_y‘ﬁ _'_Ez’,w |:H S |y/_y|7 sup ’/ O'(Xvaw) dﬁv } S
s<H 0
/ Jé] —% / B
cly —yl” +cEa [H?] < cly —yl”,

using Burkholder-Davis-Inequalities, cf. Karatzas-Shreve [11, p. 166], then once again a
representation of M as a time change of Brownian motion together with scaling, and the
fact that moments of order less than % of the hitting time of 1 by Brownian motion are
finite, cf. [11, p. 96]. We can now collect (2.58), (2.60) to bound the left-hand side of
(2.54). Coming back to the first line of (2.53), since |f|n,) < 1, and 8 < 3, cf. (1.13), we

find (recall 7 is not integrated in the inner expectation)

by < Eyu[Ty =7 < Ly ATy, Bxp o[ Xrya0g-r) — Xol” A 2]]

(2.61) . o
<cly—yIPPyulr=T, <L?] < cly—y|Per < ’yL y ’

—Kn

e

n

A similar bound can be proved for b,.

We then turn to the bound on ay in (2.51). We use the shorthand notation
(2.62) to = (log |y —y|) ™2, (recall (2.50)),

and denote with ¢ (2, 2’) the sub-probability density of the diffusion in the environment
w, killed when exiting the ball B(y, 10), at time ¢ > 0, when starting in z € B(y, 10). We
now find that

1—/ Gtow(Yy 2) A oy, 2) dz <1 — /qto,w(y, z)dz +

Jt9:2) = o6/ 2N d2 < 1= [ @y, 2)dz +

(2.63) |
/|pt0’w(y7 Z) - pto’w(y ) Z>| dz +1- /qto,w(y7 Z) dz +
c o (262) o
1—/Qto,w(y/,z)dz§ce_% +C}y\/% < C}y\/%/ 7

for large Lo, using (1.59) and standard estimates.

With the help of (2.63), we can construct on some auxiliary probability space two
processes Y, and Y/ with same laws as X, under P, and P, such that

PG> 1—c|t=Y
(2.64) < Vio

G ={Y, =Y, for u>ty, and Y and Y’ do not exit B(y, 10) up to time ¢} .

, with

We now see that with a slight abuse of notations, when L is large:

ay < |E[G, f(Yi2) — FVeanr,, 5 00) = (f( 12) = F(Y2nr ay))]|

B(y’ﬁn)
Hoélder, (2.45) (2.62),(2.64) ;8
<PIEE e TS -y e < |L e
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Collecting the bounds (2.51), (2.53), (2.61), (2.65), together with (2.49), we see that when
Ly is large, for 3,7 in B(z,21vd L,),

—'|8
(266) B0 fly) = Auf )] < | 12| e
This together with (2.48) and (1.38) readily implies (2.46), (see also (A.4) - (A.6) of the
Appendix). a
Remark 2.6.

1) We have used the assumption 3 < 1, cf. (1.12), in the estimate (2.58).

2) Note that the estimates on (2.51), and (1.60) can also be used to show that for
weO, n>0,zeL,Z,

(2.67) Xz Sulln < ¢ L2

3 Controlling traps

We continue the proof of Theorem 1.1. The main objective in this section is to propagate
“at level mg + 17 the estimate (1.48), and this comes in Proposition 3.3. As mentioned
in the Introduction and in Section I below Theorem 1.1, the main purpose of the control
(1.48) on the tails of the variables in (1.44) measuring the strength of traps, is to later
obtain the estimate (5.3), when “repairing defects”. This only involves a small portion of
(1.48), but (1.48) is there to let the induction proof function. As a preparation for our
main task we first construct certain couplings of the diffusion in random environment with
Brownian motion of variance a,, cf. (1.22), at times kL2, k > 0. These couplings will be
very handy later in this section as well as in Section 6. We begin with some notations.
We denote with d,, 5(-, -) the distance function on IR*:

p ’ d
, y,y € R, n>0.

(3.1) dny,9') = |

We define for v,/ probabilities on IRY, for which
(3.2) 1yl vdy) < oo, [Iy)" v/(dy) < oo,

D, 5(v,V') = sup {}/fdl/ - /fdy'} - where f on R? is such that

1f(y) = f)] < dup(y,y), fory,y € R}
(3.3)

= inf {/ dns(y,y') p(dy,dy’); with p probability
R xR?

having v, v’ as first and second marginals} ,

where the last equality results from the Kantorovich-Rubinstein Theorem, cf. Dudley
[8, Theorem 20.1]. The function D, g is sometimes called Kantorovich-Rubinstein or
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Vasserstein distance. We now consider a continuous function i with values in [0, 1], and
for w € Q, n > 0, define the probability kernel on R?

(3.4) Ron(z,dy) = R (x,dy) + h(z) S, (z,dy), cf. (1.21), (1.23),

(so when h = 0, En,h = R, and when h =1, én,h = R,).

We are now ready to state and prove the above mentioned result concerning coupling
measures.

Proposition 3.1. Let h be a continuous [0, 1]-valued function on RY, weQ, andn>0
such that i < ay, < 2. Then fory € RY, there is a measure Qn,y on the canonical space
(]Rd X ]Rd)]N endowed with the canonical o-algebra and the canonical processes Xy, k > 0,
72, k >0, such that

under Qn.y, Xr, k>0, (resp. 72, k > 0) has the law of the Markov

3.5 -
(3:5) chain on RY, starting at y with transition kernel R, 1 (resp. RY)

and for kg > 1, v >0,

(36)  Quy[| Xk —Xol =, for some k < ko) < kﬁ(%) (Fn Ty + €75) |

with I'np = SUPyer, 7.y, Lhto 1Xn,2 Snlln-

Remark 3.2. Note that under @, , above, (72);@0 has same law as (X, k22 )k>0 under
W, the Wiener measure starting from y, cf. above (1.21). The inequality (3.6) highlights
one of the interests in controlling the norms || - |,. O

Proof of Proposition 3.1: For z € R, denote with K, the non-empty compact subset of
M; (R x IR?), the set of probability measures on R? x R, endowed with the topology of
weak convergence

K.={pe M (R? x R%); p has marginals R, ;(z,-) and RY(z,-),

&0 0 DBz, F(210) = [duolon, ) pldn, d))

Observe that for any sequences z;, p;,7 > 1, with p; € K, for ¢« > 1, and z; converging to
Zoos Pi 18 tight and has a limit point p., such that:

/dn75(21, 22) pOO(de dZQ) S hmlnf Dn,ﬁ (én,h(zia ')7 R%(zu ))

= Dnﬂ (Rmh(zom ')7 R?L(ZOO’ )) ’

(3.8)

as follows straightforwardly by applying the triangle inequality satisfied by D,, 5, as well
as (2.67) and (3.3). This shows that po, € K. Then with Stroock-Varadhan [26, Lemma
12.1.8 and Theorem 12.1.10, p. 289], we can find a probability kernel p,(dz;, dz,), z € R?,
such that

(3.9) for € R p.(+) € K.,
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and define the transition probability p, . (d2’,dz)) on R? x R
(310> /g(zlu Zé) ﬁz,zo(dzlu dZ(,)) = /g(zlu Zg —z+ ZO) ﬁZ(d'Zlv dz2) ’

for ¢ bounded measurable on RY x R%, and z, 2z, € R%.

We then define @), , as the canonical law of the Markov chain with transition kernel p
and initial distribution concentrated on (y,y). With (3.7), (3.9), it is straightforward to
check that (3.5) holds. To prove (3.6), observe that for k& > 1:

EQv[dy, 5( Xy, X)) < E9[dy 5(X -1, Xp_q) ]+
P 3.9),(3.10
(3.11) EQ"’y[dn,ﬁ(Xkan - X2—1 + Xj-1)] SOL

EQ"’y[dn,ﬁ(yk—la Y2—1)] + EQ"’y[Dn,ﬁ(En,h(Yk—la ), RY(Xk-1,4))]

To bound the rightmost term, note that for 2 € R, when z € L,Z is such that |z —z| <
Vd L,, and f has Lipschitz constant at most 1 with respect to d,, s(-, "), one finds

(3.12) R £(2) = RO £ 2 ()15, £(2)] = h(2) IS0 (F() = f(2)(2)]
and since R, (z, ) is supported in B(z, D,,) with (1.23), (1.37)
<h(2)| 8 F(2)| + 1(2)] 8al(1 = Xoyap, (- — 2)) (F() = F@))(2)]
<h() |t B P+ H) B Lz O | 2] ] @),

-
Ly,

with F'(-) = x,va5, (- — 2)(f(-) = f(x)). Note that
(3.13) |Fny < B,
and we now see that the left-hand side of (3.12) is smaller than

XanLEL

2673 _
L } >§“nrn7h+€ﬁ”-

) (Rl Sl + WalXeo s ¢ BO,2VA D)) B

With (3.3), we see that we have shown that

(3.14) sup Dy, s(Rop(2,-), RO(2,-)) < kin Dopp + €70

zeR?

Coming back to (3.11), using induction over k, and the fact that Xy = Xg, Q. ,-a.s., we
find for £ > 0,

(3.15) E%[dy 5(X 0 Xp)] < k(kin Ty + €757) .

The application of Chebyshev’s inequality now yields for v > 0, kg > 1:

B - k

(Ll> Qn.y [|Xk—X2| > ~, for some k < k:o] < kzoj k(fin Toppte™™) < k2(ky Dppte ™),
n =1

which proves (3.6). O
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We can now return to the main object of this section, namely propagating (1.48) “at
level ng + 17. The idea is to devise exit strategies from C,,,11(z) for the path, that show
that it is costly for the environment to produce J,,, 11, .. variables above level u,, for z in
a finite collection A. The nature of the exit strategies depends on the level u,, and there
are four regimes, (only three when d > 4), cf. (3.20). The higher the u,, the more the
exit strategy relies on the control (1.48) at level ng. The lower the u,, the more the exit
strategy relies on “good-behavior” of the environment around C;, ,,(z) at the micro-level
no — 1, in the sense of (2.2), so that good couplings with Brownian motion resulting from
Proposition 3.1 can be employed. Good behavior is precisely expressed by the events C,,
cf. (3.24), (3.32), and below (3.33). As one of the first steps, we reduce ourselves to a
situation of “only good behavior”, cf. (3.36). This involves a certain thinning procedure of
A singling out local high values of u, and showing that bad behavior of the environment at
these sites is costly, cf. (3.36). We then have to control the probability that the variables
Jno+1,2,.. are bigger than u,, for  in a thinning of A, in the presence of good-behavior
of the environment, cf. Lemma 3.4. This is done with the help of the exit strategies that
enable to bound the variables, Jy, 414 from above, in terms of J,,, ... variables, cf. (3.50),
(3.58), (3.71), (3.76), and then use the induction assumption, cf. (3.78). The constant
¢, cf. (1.43), (1.44), is important in the treatment of the lower values of u,, cf. (3.85).
We then go back from the estimates on the thinned collection with good-behavior of the
environment to the general upper bound in (3.86).

Proposition 3.3. One can choose a (large enough) positive constant co in (1.48), such
that for large Ly and ng > mg + 1, if (1.49) holds for ng and (1.47), (1.48) hold for
0 <n < ng, then (1.48) holds for no + 1.

Proof. We consider (ug, Ay, V2)eea, with A a finite subset of L, 1 Z% an (ng + 1)-
admissible family, cf. (1.45). From the definition (1.44), we see that
(3 16) Jn,x,AuB,'y = Jn,x,A,’y \ Jn,x,B,’ya for n Z O7$ € anda A> B C Cn(x)>

' 1<~ <2459,

As a result we see that
IP[VSL’ € A7 ']no—l—l,m,Am,'ygc Z ux:| S
(ctd Eﬁo)w sup]P[‘v’x €A, Jngt1,2.Cny 1 ()70 = ux}

no—1 -

(3.17)

where sup stands for the supremum over families z, € Ly, Z¢ x e A, with Chro-1(22) C
Crot1(z), and doo(Cry—1(22), Cro—1(24)) > 10d Ly, for x # 2/, in A.

We will now work on the rightmost term of (3.17). To this end we introduce a thinning
A of A as follows. We pick some z; € A such that u,, = max, u,, and define V] = {x €
A, |2 — 21|00 < Lpgt1, and (u, + 1) log Ly, < (ug, +1)}, where we recall that |- |, denotes
the sup-norm on R%. So N corresponds to the boxes C, .1(z), z € A, adjacent to
Cho+1(x1), with value (u, + 1) smaller than (u,, + 1)/log L,,. We define

A1 = A\(N1 U {Jfl}) .

Either A; = (), in which case the process stops, or A; # (), and we repeat the same
procedure to Aj, and define x5, Ny as above, and set Ay = A;\(N2 U {z1}), and so on.
After p steps, with p < |A|, one has A, = (), and the process stops. We then write

(3.18) A={zy,. . a,}=A\ U M,

1<i<p
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and observe that

x,x € A and |2 — 2|00 < Lpyt1 implies (log L)™' < 2””7111 <log Ly,, and

d T
Y (1)< (1422 ) T (u+1).
zcA & Hno z€A

(3.19)

We introduce the notation a4 = % (d — 2)a, and partition A into four subsets:

Ay = {z e 4 uy > L%}, Ay = {z € A Lot <y < LY}

(3.200 . N ~ ~
As ={z € Ajlog Lp, <up < L™}, Ay={z € A; 0 <u, <logLy,}.

Note that ./2(2 = (), whenever d > 4.

Our aim is to produce an upper bound on quantities of the type P[Vz € .Z,
ot 1,2,0ny 1 (22) 72 = uz]. We will in essence show that {Jn0+17x70n071(%),% > u, } is unlikely
by producing an exit strategy for the process that leads before time L? o1 AT (@) from
Yy € Cpo—1(22) € Chyy1(x) to the box Chyi1.4, () with side-length L, 41/5 that borders
OCly11(2), cf. below (1.41). The nature of this strategy depends on which A;, 1 <i <4,
x belongs to. In particular when x € ./Zg, orx € ./2(3 U.ZQ, the exit strategy involves certain
events describing a “good behavior” of the environment “at level ng—17. We first specify
these events.

We introduce for z € As, (recall this only concerns the case of dimension d = 3), the
numbers a,, v, V., such that:

u, = L2, (so that by (3.20), a, € [2 a,a)), and
(3.21) def 1 7

- def 5
0<v, = —(a—a—)<1/é Z o, + <ga.

a
2 2 r 8 4

We will now define for z € A, the event C, which in essence specifies the presence in
Chot1(x) of channels of width L)+ within distance ~ L™ of any point of Cyy41 ()
where the process easily travels. More precisely call a box B = z + [O,L}Lj’“]d, z €
Litva 7%, of side-length L1, no-good for w, if all y € Ly,_1 Z* within | - |-distance
30v/d Ly,,_1 of B belong to B,,_1(w), cf. (2.2). Then set

Cro1(2) = {2 € Cugia (2); d(2, Cogia(2)°) > L™},
(3.22) and for e € Z%, |e| =1,

a1 (@) = (Chy (@) + 2Ly N\ (2).

We now define for z € C) . (z), 2/ € C5 ., (z), (e as above), and s > 0:

Cj’zl’s = {w € Q; there is a nearest-neighbor path of ng-good boxes
By =z + [0, L], ... By = 2+ [0, L] kb < ALSY
moving in the e-direction after the first ¢ € [1, k], for which

oo (21, Crg11(2)7) < £ Lhb™, with doe(2, By) V doo(#', By) < L'},

(3.23)

as well as the event

(3.24) C, = () C2*"!, where z runs over C9 ,(z), 2/ over |J C¢ , (),
2,2’ le|=1
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(note that requiring z, z’ to have rational coordinates does not change (3.24), and makes
clear that C, is an event). We now bound IP[CS]. We observe that

(3.25) P[Ce] < ¢ L% sup ]P[(Ci’zl’%)c], Ly large,

z,2!
where z, 2’ respectively run over (L1 Z*)NCY . (z), and Upejmr (L™ ZHYNCE ().

We now set w = L;()(1+Vz)(z’ —2) € Z", and for convenience assume that 2’ € CS_,(z)

and w; > 0, 1 < i < d(= 3); the other cases being handled in a similar fashion. For
0 = (01,0,) € 2Z*, with 6,,0, < 0, we define ky = w; + wy + w3 + |61 + |02], and for
0<i<ky,

(1,0,0), 0 < < wy + |6y
(326) pg:(O,Ql,Qg),pfﬂ—p?: (O,l,O), w1+\91| §i<w1+w2—|—|91|+|02\

(0,0, 1), w1 + wo + |91| + |92| << ]{39,
as well as

Z?—l—l =z+ Lrlz?)wx P?a B'0+1 = Zz'e+1 + 10, Lrlz?)r%]d-

Note that for 6 = 6,

(3.27) doo(BY,BY) > Lit 1 <i<ky, 1 <7 <y,
and for [6;], |05 < 55 L7 Ly large,
, , (3.21)
bo < BlLagss + L") Ll ™ 4 3 L™ < ane,
(3.28) doo(2, BY) V do(2', B,) < % L and for

; 1 r1+0 . .
1 <i < kg, doo(2,Cppi1(x)°) < 3 Lny ™, implies 2, | — 20 = L7 e

Lng+1
5

2L71£_Vz I Lno-l—l

X

Fig. 2: Candidates for paths of good boxes corresponding to the exit strategy for As.
Solid lines are made of boxes of side-length L1+ and distance between paths
of boxes are at least L1
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So the paths BY, 1 < i < ky, satisfy the requirements set forth in the definition of Co
Then for any such given path BY, 1 <i < kg,

0 : CLrlz;er d a—vy T —Mo
(3.29) IP[one of the B} is not ny-good] < (m> ALV L7 g -
when Ly is large, cf. (1.14), (1.46), (1.47), (3.21).
Then using independence, cf. (1.7), (2.3), (3.27), we see that
2,21 1 (CLZ%)iux)Q
) 72 C -
P(C." )] < (2) ’
and using (3.25), we find when Ly is large, for z € As,
21) 2 g
P[CE] < eL2@™ve) exp { — cL2 } < exp{ — cLiE" "} <
(3.30)
—6d 99 M (ugp+1) log Ly,
Loy s

When = € As U Ay, (we are back in the case of a general d > 3), the event C, will in
place of (3.24) require that there are “few” boxes Cyp,_1(2) C C; ,1(x), cf. (1.41), with

2 ¢ Bpy_1(w). Just as in (3.24), the good behavior of the environment is specified at level
ng — 1. More precisely for z € A3 U A4 and w € €, we introduce the compact sets

(3.31) Kypo=UB(230Vd Lyy_1) D Ky = B(2,29Vd Ly, 1)

where the unions run over the set of z € Ly, 1Zd, with d(z, Cly 41 (7)) < 30V/d Lyy_1,
such that z ¢ By,_1(w). We then define for = € Az U Ay,

C, = {w € ; K, is contained in the union of IV, open balls

(3.32) . L~ . p
with radius 4D,,,_; and centers in L,,_1 Z } ,

with N, = [12d9(1 + a)? §f (uy + 1) log Ly,] + 1.

For x € Ag U A4, on C¢, arguing by contradiction we Can find N, disjoint open balls
with radius 2 DnO 1, and centers in Ly,_y Z0 (2 + Ly [—2 3 3]d )ﬂBﬁLO 1(w). As aresult
with (1.7), (1.47)7 (2.3), we find that for large Lo, for 2 € A U Ay

PIC;] < (e(lng1 bug)” L)Y < (eLpaBr0 70N
(3.33) (1.46)
< I MoN, /2 <L

—6d 9% M (uz+1)(log Ln,)
ng—1 °

no+1

For convenience, we set C, = €, for x € A;. We now come back to the rightmost term of
(3.17), and observe that

PVr € A, Jugt1,0.00 1(z0) 70 = Ua) <

(3.34) 21 sup ]P[for T € ./2(, Jno+1,2,Cg1(20) 70 = Uz, Co for T € G,
GCA\A, ~
C¢ for x € A\(A; UG)].
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For G as above we chose M = M(G) a maximal set of non-adjacent z in A\ (A, UG), (i.e.
with mutual | - |o-distance at least Ly,+1), and denote by M the set of z € A adjacent
to M. Coming back to the definitions of the events C, in (3.24), and the definition of
the variables Jy, 114,44, with A C Cp, 11(x), cf. (1.44), we see with the help of (1.7) that
when L is large the collection of events

(3.35) Ci,xeM, {V:E € .Z\M, o t1,,Cng 1 (z2) e = Wy Cx} are independent .
This fact together with (3.30), (3.33), yields that for large Lg

PV € A, Jingt1,2,C0 1(22) 7 = Us] <

(3.36)

_6do? ot 1)(log Ly, S
2‘.«4‘ Slip~{Ln06f_gi M3 c pm(uat+1)(log Lng) P [VSL’ e A\M, Jno+1,x,6’n071(zx),’yx > u, and Cm} }
gCA\A,

With the help of (3.19) we also have a lower bound on the exponent in the first term in
the right-hand side of (3.36), that we will later use in (3.86):

(3.37) 6d9" M S (uy +1) log Ly, >6d3*M > (u, +1).
zeM zEM

We will now bound the last term in the right-hand side of (3.36):

(3.38) IE PNV €D, Jugi1,000 1000 = Uy and C;], with D = A\M.

Our main control comes in the next

Lemma 3.4. For any positive number co there are ¢, c¢(ca) > 0, (see above Theorem
1.1 for the convention concerning constants, and cy is not yet a constant), such that for
Lo > c(ca), [Ts0(1 — ca(log L) ™) > 1, and with the notation (1.48),

- erﬂ\ﬂ Hno(l_cl(bg Lno)il)(uac"‘l) _M”O d3tt a|j4\ﬂ|

(3.39) <L, L
Proof. We define for 1 <14 < 4, in the notations of (3.20), (3.38),
(3.40) D, =DNA.

The proof involves the construction of “exit strategies” for the process somewhat in the
spirit of what was done in [29]. The nature of these exit strategies from C,,11(z), leading
t0 Chg41,, () before time L2 ., ATey, .\ (x), When starting in Cho—1(2z), depends on which
D;, 1 <i <4, x belongs to.

The exit strategy first uses an “exit path” based on a sequence of nearest-neighbor
boxes (of size L), Cny(yjz), 0 < j < jg, starting at C,,(yo,.), containing or close to
Cho—1(22), leading to a final location, the nature of which depends on which D;, 1 <i < 4,
x belongs to.

More precisely we consider a family 7, z € D, of finite sequences 7, = (Yj.z, Vi )0<i<j»
in L, Z% x {1,...,2d5% D} so that writing for simplicity (0 < j < 7,):

Cj’x = Cno (yjm)v ALI = CnO/Yj@ (yj,x>

(3.41)
A_l’m = Cno—l(zm)v for z € D\D47 A—Ll‘ = Cno(yow)? for z € D4’
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we have:
Cno—l(zm) g CO,x7 Cj,:c g Cn0+1(x)7 0 SJ S jx’ and
AP C Cj+1,m’ 0<j<Jz whenz € 'D\D4>
|y0,:v - ym‘oo S Ln07 lf Cno (ym) 2 CnO—l(zm)’ When x E D4’

(i.e. C°* is adjacent to the ng-box containing C,, _1(2,))

(3.42)

and moreover the A?* are spread apart:

(3.43) min {doo (A", AT (j,2) # (7', 2'), =1 < J < oy =1 < §' < jur} > 10d Ly -

U =

Lno+l

T3 L5

F.

Ty Te6

Fig. 3: An example where Dy = {z1,22}, Dy = {x3}, D3 = {x4}, Dy = {x5, 26}
In black the boxes Cy,—1(2z),* € D, and in grey the boxes C7®. The black
boxes are at least at mutual | - |s-distance 10dL,,,.

We now describe the additional requirements on the 7, involving which D;, 1 <i <4, x
belongs to. So in addition to the above requirements, 7, are such that:

e when = € Dy:

j» = 0, and in addition to the last line of (3.42), vo. € {1,...,2d 5@V}

3.44

( ) is arbitrary .

e When z € Ds:

(3.45) o =g +3d % [W;”} +3d,

and the nearest-neighbor path (y;.) after at most 2d steps is such that C%* remains
inside Cpy+1(x) at | - |o-distance at least 2L, from 0C,,1(x), and moves “along some
coordinate direction”.

e When x € Dsy:

(3.46) o <cLi,
and the finite sequence (y; ., Vy.z);<j. 18 now such that after at-most 2d steps C?** remains
inside Cpy11(z) at | - [oo-distance at least 2L,,, from 0C,,+1(z), and the path ends with
CI=* A=t Cn L (x), cf. (3.22).

n

30



e When x € Dy;
(3.47) Jo < g

after at most 2d steps C¥*, j < j, — 1, remains at least at | - |-distance 2L,,, from
OChy+1(2), and the path ends with C7=* A% g0 that A" C Cp 114, (7).

We will use the fact that when L is large we can select 7, when x € D\(D2UD,) and
then complete it into 7,, x € D, so that v;, , is arbitrary and y;, , is an arbitrary point
of, cf. (3.22), L,y Z* N CY () N Boo (24, 3La""), when © € Dy, when 2 € Dy, Chy (Yo.0)
is an arbitrary adjacent box of Cyy (yz) 2 Cry—1(22), Yo.e is arbitrary in {1,...,2d 5@V},
and 7., x € D fulfills all the above properties.

We will now derive lower bounds on the exit probabilities of C,+1(z) before time
L2 A Tey, @) Via Crgpay, (x), when starting in C,,_1(z,), for z € D. We only need to
consider w such that w € C,, for x € D, cf. (3.38). These lower bounds will yield upper
bounds on the variables Jn,11.4,0,) 1(20)70 € € D, In terms of Jy, ... variables to which
we will apply the induction assumption (1.48). In what follows 7., = € D, always stand
for a family of finite sequences satisfying (3.41) - (3.47). We also introduce the shorthand
notation

(3.48) Jie = Jnguyotsi-ings 0< j <o,z €D,

When x € Dy: we use the path of boxes C7* and “boundary boxes” A7, 0 < j < j,,
to let the path exit. Noting that cf,, L, < L? when Ly is large, the strong Markov
property implies that for w € €:

no+17

(3.49) inf Py [Hey @) < L. NTor 1> 11 e L%

YEUng—1(z2) 0<5<jo
Using that for large Ly, cf. (1.15), L,, <2 LSTI , we now find the desired upper bound:

(3.50) Jn0+17x7cn071(za€)7'}/x < ¢l (log Lno+1)_1 + (1 + a)_l > i

0<j<jx

When x € Dy, w € C,: the event C,, cf. (3.24), ensures the presence of many channels
made of at most 4L;, "= ng-good boxes of size L%V”, along which, as we now explain, the
diffusion travels well.

Indeed consider By and By = By + L) "e, with |e| = 1, e € Z°, two neighboring ng-
good boxes. Denote with U the interior of ByU By, with V{ the concentric sub-cube of B
with half-side length, with V} =V + L}Lj””e, the corresponding sub-cube of Bj, and with
Wi the concentric sub-cube of B; with quarter side-length. Denote with A a continuous
0, 1]-valued function, equal to 1 on U and vanishing outside an L,,_;-neighborhood of
U. We can consider the coupling measure Q),,,—1,, for y € Vj, constructed in Proposition
3.1. Choosing in the notations of Proposition 3.1:

ko = [Lno } (< [2(4ve)(1+a)—2 < [Aata® ), and v = Ly,_1,

no—1 — no—1
n()—l

it follows from standard Brownian estimates and Remark 3.2, that

(3.51) inf Quo14(Xpy € Wi, and d(X, U) > Ly, for 0 < k < ko) > c
ycVvo
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By construction, see above (3.22), in the notations of (3.6), we have for large Ly:

(1.14),(1.40)

(3.52) k2 (Kny—1 Tng 1+ €7071) < gy g LOHOT [0 000 02
So in the notations of (1.8), (1.19) we find for large Ly:

inf Py,w[HV1 < TU A (]{70 L%O_l)] >

yeWo

in‘ﬁ Py,w[XkLz € Vi, and for 0 < k < kg, d(Xyz2 ,U°%) > L;“, and

c no—1 no—1
(353 NENCEN _ _ L

Tog—1 091@3071 o Y yél‘ﬁo Qno-1,y (Xo € V1, d(Xy,U%) > 5 for

(3.6),(3.51),(3.52)
0<k<ko) —kge "mot > c.

So (3.53) shows in a quantitative way that the diffusion “travels well” from V; to V
without leaving U. We now explain how this is used to construct an exit strategy from
Cho—1(22) t0 Crgi1,, (2), before time L2 | A Toy @)-

We use the path of boxes €/ with boundary boxes A%*, 0 < j < j,, to go from
Chro—1(22) to Ad=® C Be (24, 2Lni") NCY 41 (), and A" is chosen to be inside a channel
of ng-good boxes that exit Cy41(x) in Cpyi1,, (). We use repeatedly (3.53) to control
how the diffusion travels in the channel. The above strategy brings the path to its goal
before time

CLmH-l
Lifvs
We thus find that, cf. (3.46), (1.44),

(3.54) e, PolHongna (@) € B N ey, 0] 2

! .
1+ LyE ¢ T
cEnot/Lng™ 70 inf { L {20 1,

[cLﬁ;Lio+- (Lij%)ﬂ/Aik% o < La oy ANTer

0+1( n0+1(‘r) :

no C]_ no

where inf refers to the fact that one takes the infimum over a collection of finite sequences
7., with all possible end points y;, » € Ln, Z* N CY 1 () N Bo(24, 2Lne ). This is an

infimum over a set of cardinality smaller than

, (3:21)
(3.55) cL¥: < L% Ly large.

Further from our choice in (3.21), we see that

3 a a a
(356) O‘x_(a'_yx)—zax_i Z Ea—g—ﬁ
;3 a 32D 9 a __a
(357) O‘x_yx_gaaz_z Z ﬁa—z—ﬁ
As a result of (3.54), analogously to (3.50), we find that for z € Dy, w € C,,

(358> JTL0+1,£B,C7LO,1(ZI),’\/I S
(L) + L) (10g Lyger) ™ + (1) inf{ 2 i} <

0<j<ja B

¢ Ly ¥ (log L) +(1+a) b ¥ b

0<j<z
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and inf has the same meaning as in (3.54) and involves the infimum over a set of cardinality
bounded by (3.55).

We now turn to the discussion of x € D3 and x € Dy, beginning with some considera-
tions on C,, when x € D3UD,. We thus consider an x € D3UDy, w € C,, and y € C,, (o)
with doo(Chy (Y0)s Crg+1(2)) < Ly, such that in the notations of (3.31):

def

(3.59) dly, Ky ) =1 >0.
For m > 1, we define
~om Lny Lng1? Lng  Lmg\? :
(3.60) Do = Yo +2 ([_ 2 T] \<_ 1 4))’Wlth
Yo the center of Cp,(vo) ,
(3.61) Ky = Ky M Dy Ko = Koo N Gy (90) -
Keeping in mind L, ;1 as a unit scale, we consider for m > 0, the Newtonian capacity of
-1 .
Loy Ko
(3.32)
(3.62) cap,, = cap(L, 'y Kp) < Kng—1 Na

(ﬂno—l éﬂo)d_Q .
We now consider an arbitrary continuous, [0, 1]-valued, function h such that:

~ (331
(3.63) h=1onC) (e)\Kew 2 O 1(2)\Kpw, and

hXng-1=0, forall z € L,,_4 Z% N gfm_l(w) .
We can now consider the coupling measure ),,,—1,, from Proposition 3.1. Keeping in mind
that under this measure 72, k > 0, is a Brownian motion starting from y sampled at

times ay,,—1 k Lio_l, we see from an analogous calculation as for the classical Wiener test,

cf. [28, p. 72-74], that

Qno—1,y [72 € K, for some k > O] <

c( > cap,, (2767 4 S cap (L)_(d_m ) (322)
(3.64) 2, capm(27 6y P Vo =
—(d-2)
—(d—2 r
Fino -1 No (E"O(—l '+ (Ln01> ) ’

where we recall the notation (3.59).

We now proceed in a similar fashion as in (3.53), with the help of Proposition 3.1,
choosing in (3.6) v = L,,_1, and

(3.65) ko = [l (M)z] < [dat2a®

no—1
Lno—l

We find that for large Ly:

1
Py,w [ch0+17'yx(x) < (5 Lio-ﬁ-l) A TC,L0+1(:E)j| Z Py,w [XkoL31071 € CnO'i‘ly’Ym (l’),

Ly, 1Rc
d(Xprz , Croin(2)) > 50, d(Xyr | By 1(w) N Log-1 Z7) > 29V/d Lyy-1,
(3.66) for 0 <k < ko, Thg-1 002 > L7 for 0 < k < ko| >

7L07

no—1
Ly,

Qno—Ly [Yko S Cn0+177z (x)7 d(ykv C1/10+1(x)c> > 9
d(yka /viczo—l(w> N Lno—l Zd) Z 29\/8Ln0—17 for 0 S k S kO} - kO 6_’%10717
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where we used that h =1 on C’;LOH(:I:)\I?LW, cf. (3.63), as well as the localization part of

(2.2). Then with (3.6), denoting with 5n0+1%(1’) the concentric box to Cyy41.4, (%), with
half-size, we find

—0 ~ . .
> Qno-1u [Xko € Cno1. (), d(XkﬂC?,?,()-‘rl( 2)¢) 2 Ln, for 0 < k < ko,
Xy @ Ko for 0.k < ko] — ko e ™0 — K (kugr L)y +e707),

where we have used that hxp,_1. = 0, for z € Ly,_1 ZN\Bn,_1(w), as well as (2.2) in
estimating I',,—1 , of (3.6).

Combining this with (3.64), (3.65), and the inequality
—0 =~ —0
Qno—1,y [ X, € Crot1. (@), d(X, Ch 1 (2)°) = Ly, for 0 <k < ko| > 4y

that follows from the definition of ¢; below (1.44), and (1.49), we conclude with (1.14),
(1.40) that

PyolHengprom0) < (5 Lo ) A Tp, o) =

—(d-2)
ey — Kpg— 1V, <6n0d12) + <L 7:1) ) .

(3.67)

This will be a crucial estimate to control exit strategies of the path starting in C,,—1(z)
and landing in Cyy11 4, (z) before time L2 | A Tey, (@), When z belongs to Ds U Dy,

When x € D3, w € C,: we describe the exit strategy. First consider the boxes C7%, with

boundary boxes A%, 0 < j < j, (29 n, + 3d. Consider a path of the diffusion starting in

Cho—1(2:) successively entering the A»* C C7+1* before time L A Tey, (5520, 0 < j < Jo
From the time it enters C?4® until it enters A% the path remains in C,,1(z), and has
diameter at least n, Ly,

If & > 0 is such that the above mentioned portion of the path remains in the open set
(3.68) Up ={y € R, dly, K,..) <0},
in view of (3.32), the fact that w € C, then implies
Ny Ly < 2Ny(4 Dyy1 + 6) .

Choosing

(3.69) r= n;”]{;"“ —4D,,_1 >0, when L is large, cf. (3.32), (3.45),

the path enters Cpg4q(z) N U before time (j, + 1) L2 A Tey i@ <3 L2 ANTer (@)
Letting this entrance point in Cy,41(x) N US play the role of y in (3.67), we can use the
strong Markov property and find that for large Ly:

(3.70) inf P, [He

( CZ )
< L2 A T , > c_?:v+1 0<i<jz J 2 7
w60n071(zx) no+1 C ( ] €1

no+1,vz
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where we used that thanks to (1.14), (3.20), (3.32), (3.45), (3.69), the last term of (3.67)
is arbitrarily small, when L is large. As a result we thus see that when L is large:

(3.71) Jno+1,r,Cn071(zz),% < cng(log Lno-i-l)_l +(1+ a)_l > i

0<j<jx

When x € Dy, w € C,: we denote with 5%@ the union, (we recall that C,,(y,) 2
Cho—1(2z), cf. (3.42)):

(3.72) Cove= U @)

@_yac|oo§LnO

A path of the diffusion inside 6’n0,x starting in C,,_1(z,) with diameter at least %Lno
before time (3 L2 1) A Ter

rodl (@), Dy the same argument as below (3.68), enters before
that time the set @Lo,x N Uy, with
(3.73) r=2Lm 4P, >0, when Lo is large.

4N,

If this entrance point in 5no,ac N Uf plays the role of y, (3.67) provides a lower bound on
the probability that the path then reaches Cyy11,, (z) before (3 L2 1) A Ter

(z)-
no+1
Note that when starting at u in Cp, (), with [J — ¥z|oo < Lp,:
x 1 —(Ja
(3.74) Pu,w[ L3,ATey > 5 LnO] > LnoC , where
(375) S = inf {J"Ovylv o ()5 |y/ - yx|00 < an 7/ S {17 AR 2d5(d_1)}} :

With the strong Markov property, we thus see that for large Lo,
yecj?,fl(m) ol Heu100@) < Ligis ATy 0] 2
AN CWE! WAL
(3.76) 200(1—(1—¢4 Lnoc‘]l‘)[ o/ ]) >2¢1(1— (1= ¢ LyS) of ) =

—C Ty ! e (w1
inf 261(1 — (1 - Lno 0:4":Cng (¥"),y )5%0/4)

)
vy

where the infimum is over the same set as in (3.75).

We will now employ the bounds (3.50), (3.58), (3.71), (3.76) to bound I in (3.38) and
prove the claim (3.39). To keep track of the infima that enter (3.58), (3.76), we introduce
a set IT of m = (7;)ep, such that for any xg € Dy, m € 11, the set of 7’ € II that coincide
with 7 for  # g is such that all points of L, Z*NCY | (2) N Bu(z,3 L,llj'/;) and all v in
{1,...,2d5 Y} occur as Yjugreo a0 7j,, ., and similarly for any z¢ € Dy, 7 € II, the set
of 7' € II that coincide with 7 for # 1 is such that all y' € L, Z* with C,,(¢/) C énovx
and 7' € {1,...,2d 514D} occur as yo, and vo,. With (3.55) we see that when Ly is large
we can choose such a II with cardinality

da | D D
(3.77) II| < LialPl c[Pal

Note that for any 7 € II, the sets A¥*, —1 < j < j,, © € D, lie at mutual | - |-distance
at least 10d L,,,_1, cf. (3.43), so that in view of (1.48), for any choice of v;, > 0, where
(ox) € T EA{(ja); e €D, 0< ' < i),
(3.78) ]P[for all (j,z) € T, Jj.>v.] < [l P[Z> U]y:c] ,

(Jz)ed
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where Z = Z;, and Z;, k > 1, is an i.i.d. family of non-negative random variables defined
in some auxiliary probability space such that

(3.79) P[Z >v] = Ly, M"O ) for v > 0,
(so P[Z =0] =1- L, M"O, and we assume from now on that Ly > const (¢y) so that
150 (1 = c2(log L,)™") > §). Let us mention that (3.78) can be rephrased in terms of
upper orthant order, see Shaked-Shanthikumar [24, p. 140]. We denote with ¥, k > 0,

the partial sums
(3.80) =0, Xy =2Z1+---+ 2, fork>1.

Note that for 0 < A\ < Mno log L,,,, one has

\Z] _ v Mno(v+1) _ A —Mn,
(3.81) Ele™] =1 +/0 e Ly, dv=1+ T log L N Ly, ™.

Analogously for an arbitrary collection v, > 0,2 € D, and \, € [0, M,,logL,,), © €
D\Dy, it follows from (3.78), see also [24, Theorem 5.G.1, p. 141], that:

P[ > Jjz> v, forzeD] <

0<5<jz
(3.78)
exp{ - > A vm}E[exp{ A DL Jm}, for x € Dy, Jo, > vx] <
x€D\D4 €D\ D4 0<j<Jz
B2 ep{ - S w) I BEESen] T P20
:EED\D4 ZBED\D4 €Dy
S mn (1 Ay Lip, M"O Jot1 [T PIZ> v,
exp{ — = vx} ( + ) > Uyl -
€D\ D4y €D\ Dy Mno log Lno - >\gc €Dy

We will now use (3.82) to bound [ in (3.38). Indeed for large Lo, with (3.50), (3.58),
(3.71), (3.76) we have

I< ]P[ U {cﬁno(log Logi1) P4+ (1 +a)™ X Jjz > Uy, forz € Dy,
mell 0<j<jz
CL%_% (log Lno+1)_1 +(1+ a)_1 Yo Jjz > uy, forxz e Dy,

cng(log Lpgw1) '+ (14+a)™" Y Jjx > u,, forx € Dy,
0<j<jx

Lo 5 Lottt < (1= e LS0) ™ forw e D}

From (3.45) - (3.47), j. < cly,, for @ € D\Dy, so using (3.77) and (3.82) with A\, = A, o
M, log L, — 1, for all x € D\Dy, and (1 +u) < e*, we find

1< LZ?%' Pl exp { — > M,,(log Lyy1)(uy + 1)(1 — c(log Lno)_l)}
(EG'D\'D4

(3.84)
H P[ L Cua < (1 i ClL CZ)Z?LO/ﬂ

no+1
rE€Dy
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Note that with Ly large and I1,,50(1 — c2(log L,,) ™) >
term of the last product is smaller than

1, cf. below (3.79), each individual
Plct,2 L5 > L,¢%] < P[CZ > Cuy(1 + a) + 2a — c(log Ly, ) ™'
(3.79)

= 2 —
(3.85) < exp{ — (log Lyy) My, (uy(1+a) + ce- c(log Ly,) " +1)}

< exp{ — (log Ly,) M, [(1 +a)(u, +1) + Z(% — 1) a] } :

Coming back to (3.84), we obtain

M —c(log Ly )™ Y (ug Dyl =YHYaMy,
I < LnOE ep Mng(1—c(log Lny) ™) (ua+1)] Lno‘ 4|( ) O7

and in view of (1.43), this proves (3.39). O

We can now conclude the proof of Proposition 3.3. Coming back to (3.17), (3.36), (3.37),
(3.39), we observe that when Ly is large,

(3.18)

(Ceio lgill )\A\ < L3da|A| < Ligd+la\¢4\’
and hence
(8:36)  jad+1 — My (1=’ /10g Lng ) = 5 (mt1)
]P[VJT €A Jno+17:c7Az,'yx > Uz] < L al A Ln0+10 0) 24xe A\NM
—d3%H 1 aM o |A\M| , —2d 3%HI M erﬂ(uzﬂ)
3.86 " Fno =
( ' ) 3d+1a|A\A4\ ~Mng(1—¢'/log Lng) 32 Aluz+1)
L Ln0+1 S S
L—Hno(l—c”/log Lng) X pe z(uatl) (3.19) ~M (1= /log Lng) > eci(uatl)
no+1 — no+1

where Ly > const(cs), so that [],-,(1 — c2(log L,)™") > % and in particular M,, > 1.
We then see that if ¢, is chosen to be constant bigger than the constant ¢ that appears
in the last member of (3.86), then (1.48) holds for n = ny + 1. This proves Proposition

3.3. U

4 Surgery and contraction of Holder-norms

We continue the proof of Theorem 1.1. The aim is now to propagate the part of (1.47)
that concerns Holder-norms at level ng + 1, cf. (1.39). The part of (1.47) that concerns
localization controls has been taken care of in Proposition 2.2. The control of Holder-
norms will be carried out in the present and in the next section. Here we first perform
“surgery” and remove “Holder-norm defects” at level ng — mg — 1 that occur in the large
box 57,41, see (2.1). We show that with overwhelming IP-probability the kernel R, of
the diffusion in the modified environment, when starting in 7,41, gets closer and closer
in || - ||,-norm to RY as n goes from ng — mg — 1 to ng, cf. Proposition 4.11. The crucial
step comes in Proposition 4.1, where Holder-norm estimates are derived on what is in
essence the linearization of the evolution after surgery at level n 4 1, when expressed in
terms of the one at level n, as n varies from ng — mg — 1 to ny.
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As a shorthand notation, we write, c¢f. Theorem 1.1,
(4.1) ny=ng—mog—1>0,
and introduce the event, cf. (2.2)

G={we® Ly, y/hde gﬂé (w)° N (57p+1) is contained in the union of

(4.2) at most % open balls with radius 313% and center in L% Zld} ,
0 2M0
where () = [Mo(l o) a4 +1.

By analogous considerations as in (3.31), (3.32), we see that on G°, we can find £, disjoint
open balls with centers in L, y/hle By (w)¢ N (5 Tng41) and radius 3 Dy, so that with
(2.3), (1.7), (1.46), (1.47), we see that when Ly is large

’
o

c L7210 20d — M, Z Zd 2—(14a —(mo+2)y_ M, Z 14a —(mg+2)
vy PO g

< (100(mo +2)) ™" Lo -
We introduce the set of finite sequences of length at most lo:

Y= {a = (01,09, ...,0p); with

(4.4) e ) _ o
0< /<Ay, O-iELn{)Z , B(0i73Dn{)>m5ZLo+l%®7 fOI‘lSZSﬁ},

we denote with () the only element of ¥ with length ¢ = 0. We can now write

7 -
(45) Gc U Gy, with G, = {w € O (5 Tpp41 N Ly Z) \ 'L—Jl B(04,3Dy) € By (w)},

ceY

for o = (o41,...,07), with 0 < 0 < by,
Loosely speaking, on G, the defects at level ny occurring within 57,11 are contained
in the “small set” Uf B(oy, 35%). We are now going to perform surgery on these defects.

To this end for each o € 3, we choose a [0, 1]-valued function g, such that with o =
(0’1,...,0'5), 0 SESEO,

([ 9,=0 on | B(os5 ﬁ%) U (5 Thp+1)€
1<i<l B B
(46) =1 on {doo(7 (5 7;lo+1)c> Z 2Dn6} \ U ~B(0-277Dn{))

1<4<?

, for ally,z € R?,

195 (y) — 90(2)| < ¢

y—z

\

(with the § = 1 analogue to (1.29), one can for instance construct g, as a product of
functions attached to each o;,1 <i < /¢, when ¢ > 1).

One can then define the corrected transition kernels for o € 3, w € Q:

(4.7) R , = RS + g,(Ry — RY), cf. (1.20), (1.21),
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and by induction for n € [ng, ngl:

R, o= (R)+ hy S;,U)Z%, with S , = R, , — R,, and h,, functions

(4.8) with values in [0, 1], taking the value 1 on {duo(+, (5Zne+1)¢) > 2L2, 1},
the value 0 on {duoo(+, (5Zne+1)¢) < L2}, such that  sup  |h,|m) < c.
ny<n<no

Note that Rzé’o(z,dy) is supported in B(w, 5%), and when Lg is large, it follows by
induction that for ny < n < ng:

(49) RZ+1,0(x7 dy) = (leé,o')

It is also convenient to introduce some further kernels E;,U that have a well-localized
dependence on the environment, and intuitively are “stopped versions” of the kernels R}, .
For our purpose the difference between these two kernels will be “negligible”, cf. (4.140),
and (4.12). More precisely, for 2 € R?, we consider, (see (1.14) for the notation)

L2,,/L2,

0 (JJ, dy>7 lf doo(l’, (57;0-1-1)0) Z 3L12’L+1 .

(4.10) Yn..(2) a piecewise linear function of |z — x|, with value 1 for
' |z —z| < Dj & L, edeologlos Ln)® - and value 0 for |z —z| > D} +1.

We define the probability kernels R

n,o)

(Brooh@) = X [(ne Ry )"(1 = ) f] (2)

(4‘11) 0§m<L%/Li(,)

+ [(Yne RZ&J)L”/L% f](z), with f bounded measurable.

for nj <n < ny, as

The kernel E;,U(x,dy) corresponds to a “soft stopping” with the function 1, , of the
Markov chain with kernel R}, = starting at z, at time L%/ Li{), see also (4.138) for a

trajectorial interpretation. In particular EZg,a coincides with R;’;(,)p and E;,U(a:,dy) is
supported in B(z, D} + 1+ En{)) It is also convenient to introduce

(412> g:;,a = é;,a - R?L’

and we now see that for nj, <n <ng, z € ]Rd,

(4.13) E;,o(x, dy) or §;’o(x, dy) depend in a Gg, .

14D ,)—measurable fashion in w .
1 mn|
0

In analogy with (1.24), we also define for 0 € ¥, w € Q, n) <n < ng, € RY,
Tolw,w) = [(y=2) B, (ody) = [ (g =) 5, (w.dy)
(o) (@.w) = [y =) ly—a); 5 plady), 1 < < d.

We want to compare R, with R? on the event G,, when starting reasonably away from
(5T pe+1)¢, for nj < n < mnyg+ 1. Note that with (4.8), using perturbation expansion for
ny < n < ngp:

e = (By + Iy, 5;;0)5% - (RBL)Z% + (Rg)gi — Ry

(4.14)

(4.15) (20050 s (RO, S (RO B, S5y S5 (RO
' kot +km+m=02
k;>0,m>1

+ Pa7LLfL+1 _Pa

2 .
”+1Ln+1

39



In essence we are going to first study the “linearized” term corresponding to m = 1 in
the above series, however replacing S;, ;, with the more convenient S; , due to their
better localization properties. With this in mind, we introduce for o € £, nj < n < ny,
v € Ly Z°, with the notation (1.38), the operator

(4.16) Lonw= 3 Xnt10(RY)" oy St (RO,

0<k<e2

where we have used the shorthand notations hy, () = hy(-) XD,y (- — ), and Xpi1,0(-) =
Xp,,, (- =), cf. (1.37). We also introduce, cf. (1.13), (1.40),

s/
(4.17) yn=2zn,0(Ln,O)-5(f”) forn) <n<mg+1,

where it should be observed that 2 > §, and %, is defined in (2.4). Our first important
step comes with

Proposition 4.1. When Ly is large, if for some n € [ng, no),

(4.18) ]P[ sup {‘d;:’o:@ (y,w)’ %

y€[0,Lp]? Ln

§:L,0=@ -2
12 (va)’ > Vn}} < Lno )

then for any o € X, v € L,y Zd, and event Gy € G, on which

(4.19) sup || xn.z §:w||n < vy, with S, , of L, Z* 0 {d(-, Supp hpw) < 20Vd L.},
TEShH,v
one has
~ R Un —Kn,
(4.20) P|Gone 0 { | Zonall, ., > i b < e

Proof. Without loss of generality we assume that
(4.21) by is not identically 0,

otherwise there is nothing to prove. We decompose Za,mv into

(4.22) Lonw=La+Lp+ Lo+ Lp,

where the operators on the right-hand side of (4.22) are respectively obtained by restricting
the summation over k in (4.16) to

I, = {0}, [BZ{k:0<k:§%}, IC:{k‘I%<k§€i—€§ﬁ}

(4.23) 25
Ip={k: 020" <k<0-1}.

We will obtain controls like (4.20) on each term of the decomposition, with the role of

_ d_ d_
093 veplaced with 010 for L4, (07" for £, 087 = 65V gor £, and €)°
for Lp, cf. Lemmas 4.2, 4.3, 4.5, 4.6. We begin with the control of L 4.
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Lemma 4.2. When Lg is large, for o € ¥, njy < n < ng, v € Lnyy Z°, with (4.21),
w e

Kn o* —Kn
(4.24) [Lallnt1 < = ( sup [xne Sy olln +e7) .

n TESH,v

Proof. By construction, cf. (4.19), Supp hpy € U,es, . B(z, VdL,), and for z € S,,,
y € B(z,20V/dL,), f with |f|(u11) < 1, one has

o) (B B* T D)) = (5, H)w). with
H(z) = (Panz-1)22 Xn+1,0/)(2) = (Pan@-1)12 Xnt1,0/)(2) ,

simply because S* 1 = 0. With the help of (1.49), (1.56), we find

(4.26) \VH| <cL,},, and H(z) =0.

Using a cut-off function and (A.6) from the Appendix, we can thus find H such that

(4.27)  Supp H C B(z,4D%), |H| < |H|, H = H on B(z,3D}), and |H|(, < %

n

With the remark above (4.12) on the support of R _(y, -), we see that

(4.28) Xna S o(H = H) = =X R)(H = H),
and with (1.49), (1.56) and (4.27), we find
(429> |XTL7CE (g;kl,o H - g:z,o ﬁ)|(n) S e—ﬂn :

As a result of (4.25), (4.29), we obtain

Ox 0\02 -1 ~ ox 17 —K (4.27) % Kn K
‘Xn,w Snvo'(Rn) " Xntlw f|(”) < |X”7I Sn,o H|(”) +e ™ < ||Xn,w Sn,cr”” 6_ te

Letting the family of functions Ay, , Xn.« §;7U(R2)Zi_l Xnt1w fr & € Spp play the role of the
(9i)ier in Lemma A.1 of the Appendix, with (1.29) we find for large Ly:

O 21 ~ Kn QO —Kn
(4'30> |Xn+1,v - Sn,a(Rgz)Zn ! Xn+1,0 f‘(n) < 7 ( sup ||Xn,w Sn,aHn +e ) )

n  xESnyv

and since ||La|lnr1 < 2| Lalln, (4.24) follows. O

We now turn to the control of £p.

Lemma 4.3. When Ly is large, for 0 € %, njy <n < ng,v € Ly Z* with (4.21), w € Q:

xT

Ii ~
4.31 Lpllni1 < —= ( sup Xnz S olln +€7) .
(4.31) ILplln+1 65/3( P I o )

n
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Proof. Note that for k < (2, cf. (4.22), and f with |f|u1) < 1, with (1.55), (1.49),
|(RO)Z2 " Xnt10 flnsy < ¢ Hence for € S,,, repeating the construction used in
Lemma 4.2, we can find H with Supp H C B(xz,4D}), |H|m) < kn £,? such that

(4.32) |Xn,fv g:L,O’(RO)Z ket Xn+10 f = Xn,a S7;,0 ﬁ”(n) <e .

With Ly large we thus find that

O 2 =~ Kn Ox —Kn
(4'33> |Xn,m Sn,o(R(])Z ket Xn+1,v f|(n) < ﬁ_ﬁ ( sSup ||Xn,w’v Sn,oHn +e ) .

n ' €ESn,v
Note also that with (1.49), (1.56), for t > a,, L2, /2,
(4.34) |P; gl (nt1) < ¢|g|oo, When g is bounded measurable,

so that for each k € Ip,

(4.35) |Xn+1,v (Rg)k P §;§,,O’(RO)Z2 k- 1%71—1—1 v f| n+1) E_n ( Sup ||an na”n + e_’in) :

n Z'ESn v

2
Since |Ip| < E;iﬁ, summing over k € Ip, we obtain (4.31). O

We continue with the analysis of L and L. We first need to recall some facts related
to Taylor’s formula. For g a C2-function on R, Taylor’s formula with integral remainder
of order 2 states that for y, z € R%:

(4.36) gly+2) =9+ 2 = Dg(y) 2+ ryly, 2)

<2 7

where v = (71, ...,7q4) is a multi-index, |y| =1+ 454, Y =7l .oyl 27 = 2" .. 2],

and
! 1
(4.37) re(y,2) = / 31-1)2 Y o] DV g(y +tz) 27 dt,
0 Iv=3 "

and otherwise hopefully obvious notations. We recall the definition (4.14), and the nota-
tion (1.54).

Lemma 4.4. When Ly is large, 0 € 3, njy <n < ng,w € Q, for 1 < j </
ly — x| < 10VdL,, f bounded measurable,

2 v e L, %%,

n’

[ Snolw. 4B f1(2) = dho(9.) - (DPoy 1 )W)

(4.38) )
+ 5 &J:L,O'(y7w) ’ (D2PanjL% f) (y> + vaf(y)a

and

, (D)7 D [/l o —kin
(139)  |Hys)l < e(1+ 20 ) 2 (i Ak ) (e Sl 7).
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Proof. With (4.36), (1.21), we can write:
i 1
(Ro) £y +2) = Payjrz F(U) + (DPajrz £)y) - 2+ 5 (D*Pajrz f(y) -2 @ 2+ 71544(2),

and r; r,(- — y) coincides in B(y,3D;) with 7(-) which is supported in B(y,4D;), and
such that

_ D;kﬁ |f|1 D;‘l(lfﬁ)
(4.40) 7y < c L) |f\oo] ( \/jLS‘m) .
Indeed with (4.37), (1.49), (1.56):
def D73 Ifl1
4.41 sup  |rjry(x —y)| < ajn = ¢ =5 [ /\foo],
A e el < o e 2 [ A

and for w,w’ € B(y,5D;),

riry(w—y) =1y —y) <c  sup  [(DV P,z [y +tH(w—y)) -
0<t<1,|y/=3

(w—=y)" = (D" Py jrz [y +t(w' —y)) - (w' —y)[ <
¢ sup |DVP, iz f(2)] D |w — w'| +
z€B(y,5D})
(4.42) vl=3
(1.56)
clw—w'|  sup |DVP, iz f(2)| D} <

z€B(y,5bD})
lv|=4

clw—w| ( D3 D4 )( KR ) ‘w—w’}ﬁ ( D )
Ve iy 29 ANe T Al v B G

So using a cut-off function, we obtain the claim (4.40). Since R*w(y, dz) is supported in
B(y,3D;), cf. above (4.12),

(443) | [ 520y d2)(ripc=9) =7(2)| = | [ By, d)(rs (2 =) =F(2)| < cajoe™

using Cauchy-Schwarz’s inequality, (1.49), (1.59) in the last step.
Taking into account that x, .(y) = 1, and

His(y) = [ Sio(y.d2) 150(z = ).
the claim (4.39) now follows from the above inequality and (4.40). O
We now decompose L¢, cf. (4.22), into
(4.44) Lo=Ly+ L
where in the notations of (4.14), (4.38)

£h 1) = X onern@{ (B (o () [ &0 () - (DPay k) s F)C)

e + % Y o (sw) - (D?* Py (02 —k-1) Xnt10 f)(')D} (v)

and

LofW)= % Xortal®) [ (B d2) huol=) H 15,0, 1(2).

kel

Our next step comes with
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Lemma 4.5. When Ly is large, 0 € &, njy <n < ng,v € Ly Z4 with (4.21), w € Q:

(4.45) 22l < 5575 (S0 e Syl 7).

TESH,v

Moreover, if n is as in (4.18), with the notation (4.17) and above (4.19)

K e
(4.46) ]:P|:Go'7n,v N {||Clc||n+1 > gm(%_l) Vn}] < e fno

n

Proof. We begin with the proof of (4.45). We choose f with |f|n41) < 1, and deduce
from (4.39) and (4.34), that

(4.47) €8l < 3wl =k =172 ( sup [xne S5 olla+e7).

kelo zE€Sn,v

Noting that ijziﬁ/sj_3/2 < c&:ﬁ/g, we find (4.45).
We then turn to the proof of (4.46). We further decompose L} into

(4.48) L&= Y Lo+ Lo,
y€{0,1}4
where
(449) ‘CC,'y f(y) = Z Xn-i—l,v(y) CDq,k(f)(y) 5
qGAW,kEIC
(4.50) Lofw)= > Xo+10®) Per(f) ),
geA kel

and we have used the notations for ¢ € Z%, k > 0,

©qk(f)(y) = / Poi2 (4, d2) oo (2) [}, 6(2,0) - (DPay@ k113 Xnt10 ) (2)

(4.51) B, .
+ ) i;’U(Z,W) ’ (D2Pan(f%—k—1)L% S(Jn—l-l,v f)(Z>:| )

(4.52) B, =10D}(q+[0,1]%),

(4.53) ={q € Z* BN (U,cic7 B(0:,20Vd D) # 0}), with
U:(Ula-"7027)70§€§€07

(4.54) A, ={qeZN\N; ¢ =;mod?2, for 1 <i<d, and B, N Supp hn, # 0} .
Note that in view of (1.7) and (4.13), for f bounded measurable and ~ € {0, 1},
(4.55) {(®4x(f))o<k<e } are independent under IP, as ¢ varies over A, .

Note also that when L is large, with o,n,v as above (4.45) and v € {0,1}%, by the
properties of the support of h,,,, cf. below (4.16),

(4.56) Al < e D”“) < kol N < c.
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We use wavelets, see (1.34), to control ||£{]|ns1, and recall from Proposition A.2 in the
Appendix that for v € {0,1}¢:
280 1

(457> H‘CC,’yHn—H <c sup Z W W }<‘9a,f,p7 'CC,'y 9a’,£’,p’>} )
a,é,p a/l/’p/

where the supremum runs over a € {0,1}¢, ¢ < J,4, cf. (A7), p € Z¢, with o # 0,
when ¢ < J,,1, and similar constraints for o/, ¢, p’ in the sum. An analogous inequality
holds for L in place of L¢ . From now we consider triplets

(e, £,p), (o, 0, p') satisfying the above conditions and such that
Supp ea,f,p N Supp Xn+1w # (2)7 and Supp ea’,ﬁ’,p’ N Supp %n—i—l,v 7A @ )
cf. below (4.16) for the notation.

(4.58)

Given v € {0,1}?, we introduce an enumeration ¢;,1 < j < |A,|, of A,. We then
define for 0 < 7 < [A,]

(459) M] = 2_[% Z <0a,€,p7 Xn+1p ¢j’,k>7 fOI'j > 17 MO = 07

kelc,j'<j

where in the notations of (4.51),

(4.60) Diany) E By (B ) (y) -

We now bound |M; — M;_4|, first when w € Gy, cf. above (4.19), and then for a general
w € ). Note that with analogous arguments as in the proof of Lemma 2.1, in view of
(4.14), (4.19), (1.49), for w € G0,

(461) fOI' Yy € Supp hn,va |gjz,o(y7w)| S Kn Un Ln? |:\yi:z,o(y7w)| S Kn Un L?L :

In addition to (4.58), let us first assume that
(4.62) 2" < L,.

Then for v,y € B(v,20Vd Ly,41) N Supp Ot p, w € Gopp, 1 < j < |A,|, with the help of
(1.49), (1.56), (4.61), in view of (4.51), (4.60), we find when L, is large:

= Jials) — ) < 22 (2 3

kelc Ln+1 Ln+l

> 1y=Lr-1 _c|2f’p’—1OD;§qjl2}
[/@nl/nLn(En k—1)"2L; exp{ G

(22 —k=1)"3 L;Y) + kv L2(2 — k — 1)1 L2

n n

(4.63)

c|2¢p’ —10D7 ¢;? / _1 . \d
eXp{ BRCE }(% (6 —k=172 L) } ’

(1.34)
where in the expression inside the exponential we made use of (4.62), of Supp 0 ¢y C
B(2"p,c2"), and of ({2 —k—1)"/2 L, > D}, for k € I. Hence the left-hand side of (4.63)
is smaller than:

l * d
—LCQ Fin Vn (LD" ) > (G —k—1)73
n+1 n+1 kelo

(4.64)

_clzf’p/—loD:;qu} vz 1 1\-1 r-1)d
exp{ @ F- D2 (2°(¢2 —k—-1)"z L;')".
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Using a comparison with fooo s~Pe~"/*ds, we find that

(4.65) forp>1u>0, Y k*exp{- %} < c(p)(u=P"H A1),
1<k<oco
so that
2 7. 1y-{dxD B )2ty — 10D;§qj|2} < [( Ly, >d_1 ]
2, e k- ool - Tdrna ) < {(gv=iom) M

and coming back to (4.63), (4.64), we find that for w € Gy,., 1 < j < |A,|, v,y €
B(“? 20\/3Ln+1) N Supp ea,Z,p:

(4.66) > [vin(y) — Vix(y)] < Fnvm LQ—E ( D )d (%)d[<m>d_l N 1} :

kEIc n+1 Ln+1

and with entirely analogous bounds

o) 3 1l < s (2)"(2) [(@rionmg) 1

kel n+1

We now replace (4.62) with:
(4.68) L, <2< Ln..
We then write for y, 3" € B(v, 20\/8Ln+1) NSuppborp, w € Gono, 1 < j < |A,|:

c2! * \d
S Tie(y) = is)| < o (1) Kavn

kE€lo Ln+1 Ln+1
Y Bk ) e { - ZPODIGR (2T,
n 2 2
(4.69) L,
YW, * 2'\2
2 _ L _ 1)1 {_C(I2 p' — 10D} g;] — 2 )+}]
g ko hTer (@ —k-1)L3 ’

20> (2 —k—1)Y/2L,

where we omitted the intermediary step, cf. (4.63), where terms corresponding to élv,ig and
Aﬁw are separately bounded. Note that

-1 g
470 2 1) S < (B 2 _f—1)8 <l
n 2 n
kelc, kelc, n
2 (3 —k—1)/2Ly, 2! (12 —k-1)1/2L,,

These inequalities together with (4.65) show that for w € G0, ¥,y € B(v, 20v/d Lp,1)N
Supp Onrp, 1 < j <|A,|, with (4.68) we have:

3 1osat) — ] < e (25) () [ ()

L,\%! L, -1 2 (12¢p’ — 10D} q;| — c2*)?
(4.71) {(27> /\(|2f’p/—10D;;qj|) }+<L_n) eXp {_C 22/ +H i

9t D* \d9of ot d—1 |2é/p/ _ IOD*ql 2
Rnpl, n — 11 — ex — C —n]> }:|
w2 )(05) T () el <(F =
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and with entirely similar estimates we also have in this situation
D* d 25’ 25’ d—1
1 o) E [0 G )+
(4.72) kezlc oty Lnwr/ Ln 120" = 10075
12¢'p" — 10D q;]\ 2
oo { () ]
Using the fact that [60,,,(y)dy = 0, when a # 0, cf. (A.12), we see collecting (4.66),

4.67), (4.71), (4.72) that for large Lo, w € Gypno, v € {0,1Y, (o, 4, p), (o/, 0,7 as in
( .
(4.58)

(4.73) |M; — Mj_1| < 0pe(7), 1 < j <A,

where up to a constant multiplicative factor, s« (j) is given by the right-hand side of
(4.66) when 2 < L,,, and by the last member of (4.71) when L,, < 2* < L, ;.

Observe that when we consider a general w in place of w € G,.,,, as above, we can
use analogous bounds with the only difference that (4.61) is now replaced with:

(AT4) & @) < ko L, [0y 0)] < m L2, foro € Sy € R w e Q.

Hence we find that for w € Q, v € {0,1}4, (o, £, p), (/. ¢',p) as in (4.58),

(4.75) \M; — M1 < kv oo e(5), 1< <|A,|.

Now for v € {0,1}4, (a, ¢, p), (/, €', p') as in (4.58), we introduce the conditional proba-
bility:

(4.76) P()=P[ | M~ M| < (), 155 < IA]]

and denote with [E the corresponding expectation. We note that thanks to the indepen-
dence under IP of the increments M; — M,_1, 1 < j < |A,|, cf. (4.55), these increments

are independent under P as well. We will now bound

(4.77) Ay EE[M; — M), 1< 5 <A

First note that for y € quA7 B,, cf. (4.52), (4.54), with L, large, we can replace R;&U

with ﬁné in the right-hand side of (4.11), when calculating Jz7a(y,w), Yoy, w) in (4.14).
So by isotropy, cf. (1.12), for y € U,cn. By

(4.78) E[d;, ,(y,w)] = 0.

Moreover for y in the same set, with 1 < 1,5 < d, we have

(4.79) E[(0)" (y,w)] =" E[(\)" (y,w) = (Ga)" (3, )] -

On the event where for all z € L, Z* with Supp xn. N B(y,3D7) # 0, z € B,(w), and
all 2" € Ly Z® with Supp Xnye N B(y,3D;) # 0, 2" € By (w), the integrand in the right-
hand side of (4.79), using the remark above (4.78), the strong Markov property, and the
localization estimate in (2.2), is bounded in absolute value by

(1.25)

L, 2 , _ _ .
)
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Bounding with (1.47) the probability of the complement of this event, we see that for
large Lo, v € {0, 1}, y € Uyen, B

ey d

|]E[;\>7* (y’ W)” S CD*2 [(&> L_/MO _'_ Rn L_MO] + e_r“inO
(48()) e n Ln() ny n
,(2+d)=Mo(1+a)~(moth) .45)

S ’%no no

L—lO

nog
We then observe that the bounds we derived below (4.61) until (4.73) show that when
1 <j <A, with K, asin (4.61), (a, £, p), (¢/, 0, p') as in (4.58),

(4 81) lf |J:L,U(y7w)‘ S Kn Vn LTH ‘;y/;,o(y7w>| S Kn VTLL?’L? fOI' all Yy S BIIju then
' |Mj = Mya| < 80 (j)

Hence on the event {|M; — M;_1| > 0¢0(j)}, for some y € B,;, (4.81) does not hold, and
by the remark above (4.78), we can replace o with (€ X), when negating (4.81). We thus
find with (4.18) that when L is large, for v € {0,1}4, (a, ¢, p), (o/, ¢, p') with (4.58), for
1<j <A,

|By,| ;o (452 —2
T Lo < kaly .

(4.82) P[|Mj = M; 1| > 600 (5)] < ¢
Coming back to (4.78), (4.80), to replace (4.61), the estimates (4.61) until (4.73) now
show that with 1 < j <|A,|:

(4.83) (M) — M)l < (0 vn Ly) ™" Ly 0,0 () < Loy 80,0 (4)

and noting that

7 . .
BIM, — M) "L AP [|M; — M| < 600(7)] +E[M, — My, [M; — M| > b00(7)] |

we obtain from (4.75), (4.82), (4.83), that for v € {0,1}%, (a, £, p), (¢/, ¢, p') as in (4.58),

(4.84) 1A < 2L + ki L2 07 600 (§) < Lk 600 (5) < 00 (j) -

Observe that under P, M A —Z‘]-A:”ﬂ Aj is a sum of |A,| independent variables respectively
bounded by 2d,(j). Note also that when 2 < L, by (4.66), (4.67)

(L5, o)’ <ot () (2

(485) 1Sj§|Aw‘ Ln+1 Ln+1

2t 20\ def
S Kn Un m (LnJrl) = O-n(ga ‘g/) )

whereas for L, < 2 < L1, with (4.71), (4.72)

1 1
3 12\ 2 2¢ ( Dp N\ 2" 29N\ | (2Y\92
( 5”””(‘7)2)2 = Fntnp (L \ ) L, [(D*) + (D*) }2
(4 86) 1<5<|Ay] n+l ntl " n n

¢ o\ 41

_d 2 2 2T def

S Kn, I/ngn 7 ) (L—) == O'n(g,é/)
n—+ n
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Note also that when Ly is large, for £, ¢ < J, .1, v € {0, 1}

~ (4.84) Loy . 1
S ()= NI T o))
1<5<|A | Cauchy—Schwarz 1<<|Ay]

(4.87)
(4.56),(1.14)
< o).
We thus see that for u > o,,(¢, '), with a slight variation of Azuma’s inequality, cf. [1], or
[30], p. 308,

]P“M\Aw” > U, Go‘,n,v] < ]’15[|M|A~/\| > u] <

Pl[Ma,— > Ajfzu— % &,e'(j)]§2e><p{—3—12<#7€,)>2}~

1<G<|Ay] 1<5<|AS]

(4.88)

If we define for v € {0,1}? the event
Gonvery = Gopwp N {for (ar, £,p), (&, 0, p'), as in (4.58),

4.89 N
( ) %Kea,&p’ Ly ea’vf’,p’> <o (L) (L + 1) ellosloa Ln) } )

(¢_, 0" denote the respective negative parts of ¢, '), we see that when L, is large

P [Gam,v \Ga,n,vﬁ,’y} S

S . (Dn+1>d (5n+1>d ox { _ L crogton L)1 4 g 4 g )2} <
(4.90) w5, ot 20 p 32 - - <
2 Dny1\? L 9(loglog Ln)? 2 2
(35, () e { - mmeree)) s om
0<JIn+1 2 64

Observe that on Gy ¢ in view of (4.57) one has

’

e B
(4.91) NLellner < T e sup > 27 o (0,0 eloslos Ln)® (1 ¢ 4 (' )

2
a,é,p C‘{/76/717/
with («, £, p), (a/, ¢, p") varying over the set described in (4.58). We now write:
(4.92) I'< F/l + Flz,

where I"} corresponds to the expression in the right-hand side of (4.91) with 2! < L, and
', to the expression with L,, < 2l < L, 1. We thus see that for large Ly,

26¢

)d(1+£_+£’_) =

/
I < Kpv, sup 557

L
20<Lpq1 UL o <p, o

(4.85) ot ( 2[’
Ln+1

(4.93)

< KpVp SUP (L2€ )1_5(1+€_) > ( 2! )6(1—{—@’_) < K’;BV".

20<Lny1 ntl 2t <p, “Dnt n

On the other hand, (recall £ = 0, when L, < 2 < L,.1):

(4.86) ’ U G4l o
I'y < Kpv, sup 2 (1+12) > 09 (i—n)z %

Y 1
2 SL7L+1 n+ Ln<2Z/SLn+17p/

wo s () 000 2 ()W) (G

L
20<Lp4y AL Ln<2¢<Lpq "1

¢ \1-8 ¢ NB ot/ \ —5+1

L ALE—1) "’
U< Ly NEnFL Ln<2V<Lpqr o MFL e
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Combining (4.93), (4.94), we see that when Ly is large, for v € {0,1}%, on Gy 0.0+

Kn Vn
(4.95) [Lcqllni < W'

We now turn to the study of L. Keeping in mind that |[A'| < ¢, cf. (4.53), using
similar estimates as in (4.66), (4.67), (4.71), (4.72), we see that for large Lo, with («, ¢, p),
(o/,0',p") as in (4.58), and for w € Gy 4

2@ D* d 2[' d ,
nnun—< ") (—), for2¢ < L, ,

1 Ln+1 Ln+1 Ln
496 b Qa y 90/ v
( ) ode ‘< Apy ~c Vol of Do N o0 /
finVnL— (L :1) L_, for Ln<2é SLn—i-l-
n+1 n n

By direct inspection in (4.85), (4.86), we see that the above right-hand side is bounded
by kn, 0, (¢, ¢"). Hence the analogous bound as in (4.57), for £}, as well as (4.91) - (4.94),
now prove that when Ly is large, for w € G, ,, 4

K Vn
(4.97) 1L lne < W-
Collecting (4.90), (4.95), (4.97), we have completed the proof of (4.46). O

We continue with the analysis of Lp. In analogy with (4.44), and with Ip replacing
1o there, we write:

(4.98) Lp=Lp+ L5

Lemma 4.6. When Ly is large, 0 € &, njy <n < ng, v € Ly Z% with (4.21), w € Q:

(4.99) 18 < 22 (5w ona B lln+ 7).

n  TESnw

Moreover if n is as in (4.18) with the notations (4.17) and above (4.19),

Kn Un e
(4.100) P[Gono 0 { 1Lk lIner > W}]ge 3

Proof. We begin with the proof of (4.99). Note that with (1.49), (1.56), for g bounded
measurable,

(4101) ’Xn—i—l,v PankL% g|(n+1 \/7 |g‘007 for 1 < k < giu

hence with (4.39) we find

L4 nar < — 2 su nxg,’;gnjte_“"
L5l +1_keZIB N (xeSEUHX, ol )

KR ~ _
> g_n( sup || xn.e S:L,0'||n+€ Hn) .
n  TESn,w

(4.102)
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This proves (4.99).

We continue with the proof of (4.100). In analogy to (4.48), and with I replacing I¢
there, we decompose L} into:

(4.103) L= > Lp,+Ly,

v€{0,1}4

For v € {0,1}%, (o, ¢,p), (o/, €', p') satisfying (4.58), we introduce in full analogy with
(4.59), with Ip replacing I there, M;,0 < j < |A,|. With the definition (4.60), we
observe that for large L, when

(4.104) 28 < L,

for 1,1y’ € B(v,20Vd Ly41) N Supp Ooip, W€ Gonyp, 1 < j <|A;|, with the help of (1.56),
(4.61),

> [Wik(y) — ¥y <

kelp

(4.10) (D L Wl f A (2
G CLE L, 0P kL2 0w \Ini)
with
(4.106) Aj(y,y) =inf {Jw—w|, we By, w =X y+ (1= Ny, 0< A< 1},

As a result of (4.65), under the above assumptions:

@07 % lal) — vl < S () ] Y

kelp én (yvy/ Ln

and by an analogous calculation

(4.108) S aay)] < 2 (2 )H A, with A;(p) 2 d(y, By,).

kelp tn

If we now turn to the case
(4.109) L, <2< L,

under the same conditions as stated above (4.105), we find

S faly) -t < S (2L

L
kelg,VELy>2¢ ntl

_(d+1) B cAj(y,y’)Q}
> k=72 exp { R L2 :

2l <\/EL7L SLn+1

(4.110)

Note that one has the following refinement of (4.65):

(4.111) > k‘pexp{ — %} <c(p){(uvuv)" PV AL}, foru,v>0,p>1,

v<k
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that is obtained by considering the case u = 0, and using (4.65). Hence for large Lo, when
(4.109) holds, for ¥,y € B(v,20VdLy41) NSUPP Oapp, w € Gony, 1 < j < A, |:

(4.112) S Tisly) — i) < T ( - )d |y/;nyl| szi—yl(y,y’))d_l " 1}

L
kel VELy>2¢ n+l

and in an analogous fashion:

’

(4.113) > ()] < R}:" ( - )d{<m)d_2M}'

L
k€lg,VEL,>2¢ n+l

On the other hand with (4.60), (4.51):

’

1 Kn Un 2! d
S o[ Wl ()
Suppea,é,p n

L
kelp,VkL,<2¢ et

1 c ez — y)? }
(4.114) 2 2t /qu o /B(gep,cy) @ krzyir P { kL3 =

k€lp,VkL,<2¢
Ko Un 25, d 2E 2 D:;, d Aj (2Ep) 2
4y Ly Ln 2¢ R 2¢ ’

Collecting our bounds, we thus see that when Ly is large, for v € {0,1}4, (o, £, p), (o/, €', p')
as in (4.58), w € Gopp, 1 < j <A,

(4.115) | M — Mj1| < b ()

where for 26 < L,,, 2 < L,.1,1<j < |A,|:

N Ealn (20 NI T 2 L, %2 2 [ ( _Ln \*!
4.116)  Seper(f) = (o) len i) v dGs) A
( ) Oepe) C,  \Lnp Loy W\ Ajep " Ln A\ Ajep

with

Ajip = inf{lw — @], w € By, w € B(2'p,c2°)},

with ¢ such that Supp 6.(-) € B(0,¢), for all a € {0,1}%, and we have made use of the
fact that since 2° < L,,, a # 0, and in view of (A.12), [0a.0,(y)dy = 0.

On the other hand when L,, < 2 < L1, 2" < L,11,1 <j < |A,|:

50 () = Fn < 2" )d[ 2! < Ly )d‘2+ﬁ (L)d_l
¢ \J ‘. Lot L \20V Aj0, L, \2¢V A,

C() (-]

Arguing as above (4.75), we see that when Ly is large, for v € {0, 1}, (o, £, p), (o, ¢, p)
as in (4.58), forw € Q, 1 < j <|A,[:

(4.117)

(4.118) |M; — M| < kv g0 () -
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Keeping the same notation IP and Aj,1 <35 <|A,|, as in (4.76), (4.77), with the only
difference that 0, ¢ (j) replaces g (j) in (4.76), repeating the argument leading to (4.84),
we see that for large Lo, under the same conditions as above (4.118)

_ .\ def T . .
(4.119) 10| < L 600 () S Gupr(5), 1< j < |A,].

Keeping in mind the objective of deriving bounds that parallel (4.88), we now bound
Xi<j<iay] 87,.0(5))"%. To this end note first that for 2 < L,,p,¢' compatible with
(4.58), cf. (4.116),

1
(S ) <
1<5<|Ay]
1

U 25/ d 2@ L 2(d—2) §
4120 2 (27| 2 () n) e
( ) Kn Ln+1 Ln+1 lgjé:lAW‘ Ajvgvp

ol L, \2@-1) i
@z, G )l
n N IGSIA,| N

Observe that with (4.54), and the notations below (4.116),

i) (5=
1<i<ia,) St
(4.121) =0, when d > 4,

2(d—1)
i) ( Ln ) Al <ec
1<iA,| At

2(d—2)
) AT < ki 009, with w(d) = 3, when d =3,

As a result we obtain that for 2¢ < L,,, p, ' compatible with (4.58):

(4.122) ( 3 5g,p,z/(j)2)% < (0, ) 9 Fn ¥ ( 2 )d 2

1<G<|A, o NLnga /) Ln

To handle the case L, < 2¢ < L, 1, observe that:

) 2 oNd
)z el o(5) e ()
15 <1A,| 2 Ln
2(d—1) 2(d—1) s ot \ d d—2 d—2
w2 i) =@ &) @) =3
1<5<iA, ) N2V Aite 2 Dn 2 2

L 2(d—2) L 2(d—2) 2E d .
n <clZ2 —(d=3)
Y <2f\/Aj,g,p> _c<2£) (D*) + > 1)

1<G<|Ay] n c20<iD} <cDp i1

A

(4.123)

< kn (2| with the notation of (4.121) .

Coming back to (4.117), we obtain for L, < 2° < L,,1,p, ¢ compatible with (4.58):
L ¢ N\d ¢ ¢ 4_q d_9
Sweli?) <52 (25) () 6% 2 (3) +(3) |
<1SJ§M| e () ) < Ly Ly Lo/ ™ * L, \2¢ + 2!

¢ \d ¢ NPT o
<50 (o) () a0+ (2) ] E o,
- gn Ln+1 LnJrl gn + Ln Tn (67 ‘g )
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The same argument leading to (4.87), (4.88) shows that when Ly is large, ¢, 0’ < J,41,
v € {0, 1}

(4.125) > buperld) < %an(& )

1<5<|A,]

and for u > o, (¢,0'),

(4.126) P[|Ma, | > u,Gony] <2 eXp{ L ( - )2}

We can now introduce for v € {0, 1}¢ the event
Gonvpry = GonyN {for a,l,p), (o, 0, p) as in (4.58),

4.127
( ) ﬁ él)(l —|—€ _|_£/ ) (loglog Ly)? }’

QdZ ‘<9afp’£3v ol b,
and find that when Ly is large, for v € {0, 1}, similarly to (4.90),
(4.128) PlGono\Gonvpa) < e o,

Moreover on the event G, . 5~, We have

B

g OnlG O+ L ) losiosin?

(4.129) 1L~ llns1 < I e sup >

alp o L p!
with (a, £, p), (o, ¢, p') varying over the set described in (4.58). We now write:
(4.130) [ <IyVIy,

with I'; defined as I' with the additional requirement 2¢ < L,,, and I'y with the additional
requirement L, < 2° < L, ., instead. With (4.122), we find for large Lo:

Kn V, 2t \d 26¢'
< n Yn !
b= b ;lﬁlgn O/%;,p’ <Ln+1) (Ln> (1 He+t ) 26t

(4.131) ,
nVn 2 \1-F 2°NP _ kv
Iig: sup <L_n) (1 —|—£_) Z (1 + A€I_><L_n> S le_yﬁ) ’

26<Ly, 20 <Lnt1

IA

whereas with (4.124), we find, (recall /_ = 0, when L,, < 2° < L, 14):

Kn Vn 28 2¢ v(d) 2t
[y < s 2 [ a 4 (B)a+e)
Cn, Ln<2<Lnt1 2¢ <L, 200 [ Lyga Ln)
¢ \1-5 B 2N\ v(d)
(4.132) < i qup Wd)( 2 ) L (anrl> ( 2¢ ) }
bn Ln<2¢<Lnit Lyt 2 L,
Kn Vp Kp Up

= - Gvd) - (NG

Coming back to (4.129), we see that when Ly is large, for v € {0,1}¢, on Gy,0 5, We
have

1 Rp Vn
(4.133) L5 llnt1 < m
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We now turn to the study of L. Keeping in mind that |[A’'| < ¢, cf. (4.53), using similar
estimates as in (4.115), (4.116), (4.117), we see that for large Lo, with («, ¢, p), (a/, ¢, ')
as in (4.58), and for w € Gy .0

(4.134) 27O, L5 00 0y

K Up [ 20 \d/ 2¢ L\ 42

if L, < 2¢ < Ln+1-

By direct inspection, cf. (4.122), (4.124), we see that the right-hand side above is bounded
by kn 0, (l,¢'). Hence the analogous bound to (4.129) for L5, as well as (4.131), (4.132)
show that when L is large, for w € G,

I{'n Vn
4.1 T e
Combining (4.128), (4.133), (4.135), we have proved (4.100). O

Collecting Lemmas 4.2, 4.3, 4.5, 4.6, we see that we have proved Proposition 4.1. [

Remark 4.7. As aresult of Lemmas 4.2, 4.3, 4.5, 4.6, we see that with high probability on
Gonws HEU nw|lnt1 18 smaller than k,, v, by the crucial contraction factor £, BI3NA=RINA/Z+1)
(= énﬁ/g, with our choice 3 € (0,1] in (1.13)). In the proof of Proposition 4.1, there is an
asymmetry in the role of k close to 0 and k close to 2 — 1 in the decomposition (4.22),
which stems from the use of Taylor’s formula to second order, cf. (4.38). In a loose sense,
if the S* in the definition of Emn,v in (4.16) had been centered under IP, we could have
avoided Taylor’s expansion, and chosen in (4.22), I, = {0}, I = {k : 0 < k < (2/2},
Io ={k:02/2 <k < ?—1}, Ip = {%? —1}. With the proper assumptions, the role of

—BA(I—B)A(L—
£, P3NI=ANAZTY Go1d then have been replaced with ¢, PAA=HNG1) , displaying a higher

symmetry between the role of small k and k close to /2 — 1. Ultlmately the asymmetry in

the proof results from the fact that we work with S,, which compares R, to the Gaussian
kernel RY, rather than separately analyzing R, — IE[R,] and E[R,] — RC. O

Our next objective, see the comments above (4.10), is to control ||h,(S}; , — g;;g)Hn
To this end we introduce the event, cf. (4.2):

G=Gn {we L, Z'n gﬁ(w)c N (57pp+1) is contained in the
(4.136) no<n=no ynion of at most £, open balls with radius 3D,, and

center in L, Zd} .

The same estimates as in (4.3), show that for large Ly,

. _ 1,
(4.137) IP[G€] < (ng — nj + 1)(100(mg + 2)) 7 LM < 00 LM

It is also convenient for o € 3, w € €2, to introduce the laws P/, y € R¢, of the canonical
Markov chain on (R?)N, with transition kernel R, , cf. (4.7). We denote with E7, the

na’
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corresponding expectation and with Z, k& > 0, the canonical process on (]Rd)N. So for
instance for bounded measurable f and n € [nj, ng], y € RY, in view of (4.11),

R fy) =
(4.138) B | S I bna(Z00 = tny(Za) SZn)+ T1 (%) S(2,)]

with Ky = (Lo /Lo )?.

Lemma 4.8. When Ly is large, for o € X, ng <n < ng, y € {d(-,Supph,) < 50v/dL,},
x € L,Z N {d(-,Supp h,) < 20vdL,}, w € G,

(4.139) P, sup |Zy — Zo| > 306 D,] < e,
0<k<kn

(4.140) XSy = S o)l < €70,

and

(4.141) IXnz S olln < L.

Proof. We begin with the proof of (4.139). The case n = ny, is obvious since k, = 1, and
the steps of Z, have length at most D,,, Py -as. cf. (4.7). Since w € G, we can find a

collection w; € L, Z% 1<i < ZO, with B(w;, Bﬁn) N 57,41 7 0, such that

(4.142) B, (w) 2 ((5Tng1) N L ZH\ U B(w;,3D,,).
1<i<lo
Let us write 0 = (0y,...,07), where 0 < (< Zo, and introduce the open set

U:( U B(wi,6f5n))u< U B(ai,65n)>.

1<i<fo 1<i<t

Since P/ -a.s., Z, has steps of length at most E%, and U is a union of at most 2?0
balls of radius 6D, using a connectedness argument we see that Py -a.s., on the event

No<k<k, 12k € U}, one has supgcy<y, [Zx — Zo| < 7 X 20y D,,. Therefore Py -a.s., on the
event in (4.139), Z. exits U before times k,,. If we now define:

(4.143) 7 =inf{k > 0; iI;f d(Zy, z) > 4D,}, (z runs over {wy, .. WG, 01y, O0))

we see that the probability in (4.139) is smaller than:

(4.144) By |7 <k Pgu| sw 12— 2| > 22|,

0<k<kn

where we have used the strong Markov property. With our choice of y, see also below (4.8),

we see that Py -a.s., on {7 < kn}, doo(Zr, (5Tng41)) > Ly — ¢ Ly — (Ly/ Ly )* Dy >
ﬁn + 215%, when L is large.
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So in view of (4.6), with the notation (1.18), we obtain that P/ -a.s., on {7 < k,},

e .

D D1 (2:2),(4.142)
ng w| Sup |Zk - ZO‘ > n:| < PZ-,—,w |:X22 > —n] <
" Lo<k<k, 2 noo2

Coming back to (4.144), we obtain (4.139).

We now prove (4.140). Once again the case n = ny is immediate since é;’;&g coincides
with R;&U. We thus assume ny < n < ng, and choose f with |f|n) <1, w € G. With
large Lo, we see that, cf. (4.9), (4.138), for z as in (4.140), y € R,

Xna () (St = Sio) F(1) E Xna(y) A f(y), with

(4.145) B fW) =E | f(Zk) = >0 T1 ¥ny(Ze)(1 = ¥ny(Zm)) F(Zm) —

0<m<ky, 0<k<m

[T nu(Z) f(Z,)]

0<k<kn

and hence by the choice of 1, ,, cf. (4.10),

_ (4.139)
(4146) [xna(®)(Sno = Sn0) S < 2 (W) Pu| sup 125 = Zol 2 D3] < e,
Then for y,y" in {d(-,Supp Xn.) < L, }, we see that when |y — y'| > e "o,

_ |8
(4.147) e ()20 F(0) = Xna () A F)] < €70 < |12

We thus consider y,y" in {d(-, Supp xn..) < Ly}, with
(4.148) ly—y'| <e o,
and write in analogy with (2.51):

(4.149) AL fy) — A, f(Y)] < a1 + ag, where

a; =

Bpo| X T w00 =g (Za)) fZ) + T1 by (Ze) f(Z,)

0<m<kn 0<k<m 0<k<kn

— X T a2 = Yas(Za) F(Za) =TT au(Z) (2]

0<m<kn, 0<k<m 0<k<kn

and with hopefully obvious notations

@ = [(Bfu=Eg ) [f(Z) = 5 by Z)(1=ny(Zn) f(Zm)= T1 ¥nalZ) F(Z1)]|.

0<m<kn 0<k<kn
In view of (4.10), [ (-) — Yny (-)] < |y — ¥'|, and we see that with (4.148) and (1.13),

B
< e Fno

B

Y

y—y
L,

y—y

n

(4.150) ap < (K2 + k) |y — | < (K24 k,) e o

using (4.148), and (1.13). Then using the fact that, cf. (4.6), (4.7),
* o _ 0 D ,
Rné,a - (1 gU) Rn{) + 9o Rno s
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we can write
Ry, , = A+ B, with A= (1—g,) R}, + g Ry, and

(4.151) R .
B =(1-g,)(Ry — Ry ) + go(Ruy — Ruy) -

With (1.60), (1.29), (2.46), we find

. L,
) 1Al < (22) 1A ooy < L, and
(4.152) . g

i) (1Bl < (5

) |Bllny < e~

0

Denoting with g(-) the function xp, (- —y), cf. (1.37), we have

(4.153) ay = |Ry, (9 E7,[H])(y) — Ry, (9 E7,[H])(Y)],

where |H‘ <2 1{SUPO§k§kn |Zk—Zo|>D}; /2} and

EIH] = (R )7 f(2) = 3 (ay By )" (1= tny) F(2) = Wy Ry )71 f(2).

0<m<kn—1

Using (4.151) in (4.153), as well as (4.152) i), we thus find

v=v1" ;s -
ag < ’— CLn sup Pzw sup |Zk_ZO| > +CL2
Ly 2€B(y,2Ln)  “0<k<kn
4.154 (4139) |, 718
( ) < ’yL L1 e "m0 4}, where

ay = |B(gE..[H])(y) — BlgE.LIH]) ().
In view of (4.152) ii), (4.147) - (4.150), the claim (4.140) will follow once we show that
(4.155) 9B o[H]|my < c LYk, .
To this end observe that for m > 1, with (4.151), using perturbation expansion

(4.156) (Rzép)m — B™ 4 Z B™ A(Rzé’o)m—m/_l’

o<m/<m
so that with (4.152)

(R ) floy < IBl ™+ 32 Bl e Ly < e L.

0<m/<kn—1

Analogously, we see that with 0 <m < k,, — 1,

|(¢n,y RZ(’),a)m(l - wn,y) f|(n < ||77Z}nyB||$ |1 - 77Z}n,y|(n) + Z Hwn,y BH?/ CLQ

o<m’/<m
(4.10),(4.152) e
< ch, and
| (W By )" fliny <
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The claim (4.155) follows, and this finishes the proof of (4.140).

Let us finally prove (4.141). For large Lg,0 € ¥,ny < n < ng,w € G, and 7 as in
(4.141), as a result of (4.8), (4.9):

Xn,z S:L,g = Xn,x(R;kLa,g)kn - Xn,x RSL .
Using (4.156) and (4.152), the claim (4.141) immediately follows. O

Keeping in mind the expansion (4.15), it is convenient to modify (4.16), and introduce
for o€ 3, ny <n<ng, v € Ly Z% the operator

(4.157) Lonw= 3 Xns1,0(RO)F Ny, S (RO)GE1,

0<k<e2
As an application of the previous lemma we have

Lemma 4.9. When Ly is large, for o € ¥,ny <n < ng,v € L, 7l w e G
(4.158) 1£ony = Lonyllnsr < e o

Proof. We write, (recall that h,,(-) = xp,., (- —v) ha(+)),

EU,”W - Eo,n,v =LY+ L%+ £37 with
L= 5 Xnerw (RO)F (b — hay) i, (RY)AH1

0<k<(2
(4.159) L= 5 Xarrw (R hoy (S5, — 81, )(R)GH1
0<k<t2 ’ ’
Eg = Z Xn+1,0 (Rg)k hn,v SZ,U(RSL)é%_k_l(l - %n—%l,v) :
0<k<(2

Keeping in mind (4.140), (4.141), together with (1.55), (1.56), (1.49), (1.29), we see that
L], < 2 ce o cLP <e o ||L2, < 02 ce o < e Fno,
Noting that h,, §;7U g = —hyy RY g, when g is supported in B(v,3D,,11)¢ with Ly large,

we also find
|L3]],, < 2 cLP emrmo < e7Fmo

Since we also have ||£%]],.1 < €2]| L], for i = 1,2, 3, the claim (4.158) follows. O
Proposition 4.10. When Ly is large, for ny < n < ng, (4.18) is satisfied.
Proof. We use induction over n € [ng, no). First observe that with the notation (4.5) and

in analogy with (4.3)

L2 d N m (1.46)
PlG) 21— () LMo = 1 — e Lig o™ T2 — e po
ng

Hence with (4.137), we find for large Ly

def

(4.160) P[Gon] >1— L2, with Gy = GyNG.
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We introduce the notation

(4.161) S, = L, Z4 N {d(-,Supp hy,) < 20V/d L, }, for nj <n < nyg.
Note for later use that with the notation (4.19), for ny < n < no,

(4.162) Sup1 C{v € Ly Z% Sy # 0} = {v € Lyyy Z% hy,y 20}
Further when Ly is large, for all w € Gy, © € Spy, with (4.7)

- ~ 2.2)
(4.163) ||Xn(),w S:{),(Z)Hn(’) = ”Xn(’),m Sn(’)Hn() < Unly s

and for all y € [0, Ly, |*, using (2.2), (2.4)

d*/ glv ’ :Y/*/ ~. ’
ng,0 o ng ng,0 . 7n0
(4164) L (yaw)‘ ( - L, (y7w>’) S Vn67 L2, (y7w)‘ ( - L2, (y7w)‘) S Vn6 .

Let us assume that for n; with nj < n; < ng, we have a decreasing sequence of events
Gpn, ny < n <ny, such that for ny <n <mny

(4.165) P[Gpn\Gons1] < e o,

and for w € Gy,,r € S, (4.163), (4.164) hold with n in place of nj, (the expressions in
parenthesis in (4.164) being now disregarded). With (4.160), we see that (4.18) is satisfied
with n = ny, and with (4.20) of Proposition 4.1, where we have set G, » = Gpn,, We
obtain since S, , € Sy, for all v € L, 4 Ze,

~ Ky, V.
PlGon n{ s Lol > 5t} <
(4.166) VELny 1280, 070 Un)
: 2
c <Ln0+1)de—nn0 S e hno
Lnl—l—l
We then define
~ B U,
(4167 Comer = Gon 0 { sp [l < 7Y
UELn1+1Zd:S7L1,v?é® E’I’Ll

and note from the above that (4.165) is true for n = n;. Then with Lemma 4.9, since
Goni+1 € G, we have for w € Gy, 41

R, V,
(4.168) sup 1£0n10llna+1 < 2 mﬁ/?’m
vELn1+1Zd:Sn1,U7$@ ni

Coming back to (4.15), we see that for w € Gpny41, v € Spy41:

||Xn1+1,v 521.4.17(2)”711-1-1 < ||£®,n1,v||n1+1+

(4 169) || N kZ: 2 Xn1+1,U(R911)k0 hnl S:Lh@(Rgl)kl e hn1 S:Ll’w(Rgl)km||n1+l +
’ +-+Em+m=£;,
’ kZZ(]:LTrLZ2 !
def
¢ HP@MLELlH B Pan1+1L3L1+1 ||”1+1 =ap+az+az.
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With (4.162), from (4.168) we find

(4.170) a1 < Kpy Un, E;f/?’.

Then with (4.163), with n, in place of ng, (A.3) of the Appendix, and (4.140), we see that
for w € Gy 41 € Gy

(4.171) [, S:Ll,@Hm < ||, S;Zl,(Z)Hm +eT"0 < cvy e < ey, .

As a result with the help of (1.55) and the fact that || - [|l,e1 < €2 - ||, we obtain

2
az SCE& Z (031/”1)7”:cﬂgl[(1+c3ynl)zn1 _1_2311 C3Vn1]
ko+-++km+m=€,
(4.172) ki >0,m>2
L , .00,
< cﬂﬁj vy exp{cvy, 0, } < cL) vy,

where we used the inequalities (1 + ) < e* and ¥ — 1 — v < v%eY, for £, u,v positive
numbers. To bound ag, we use the heat equation satisfied by the Brownian semigroup,
which implies that for f with |f],4+1) <1,

2
Qny Lnl +1 1

‘POénlLilJrl f - Pan1+1Lil+1 f‘(n1+1) = ‘ / 5 APS de

any41L7 4y (n1+1)

any+1L7 4y 1 (1.56),(1.49)d)
(4173) = ’ / - 5 Ps/2 APS/Z fds‘ S C|Oén1+1 — Oénl‘

n1 b 41 (TL1+1)

(149)is) 105 (1.14) 18
< CLnllo < [ 1%

We have thus shown that when L is large

_18
10

5
(4.174) az<clL,".

Collecting (4.170), (4.172), (4.174), we see that when L is large, for w € Gy, 41,0 €
8n1+1:

* — a 159
(4.175) a0 Sy nalbos 1 < 0 v G772+ L3502, + L))

and thank to (4.140), a similar inequality is satisfied by xn,+1.4 §;1 10 If we now choose
v = 0, analogous controls as in the derivation of (2.4), using (4.14), and (1.49) i) with
n =n; + 1 < ng, and the remark below (4.11), show that

glv*
ni+1
Ln1+1 (y’ W) ‘ +

:Y/’rtl-‘rl ’) <
7w —_
L?I1+1 (y )

sup (
(4.176) YE[0, Ly 1]
6_6/3 L5a 2 L_%é <
Bny+1\ Bny Vny tny + Vp, T ni+l ) = Vni+1,

nip "ni

using (1.14), (1.40), (4.17) in the last step.

We thus see that (4.163), (4.164) are satisfied for w € Gy 41, v € Spy41, With ny + 1,
in place of nj. This completes the induction step, and with (4.160), this is more than
enough to prove the claim of Proposition 4.10. O
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We are now ready to state and prove the main result of this section. We recall the
notations introduced in (4.4), (4.5), (4.136).

Proposition 4.11. When Ly is large, for each o € X there is an event Gy po+1 C G, ﬂé,
such that:

(4.177) sup P[(Gy N G)\Gongs1] < e "o,
oEY
c 1 M
4178 ]]-:) Ga’no S an LTLO ¥ Y
( ) |:<0-LGJE s +1> i| 20 +1

and on Gy pot1, for all nf <n < ng, (cf. (4.17), (4.162) for the notation),

(4'179) Suép (HXn,w SZ,can v HXn,r S:L,O'Hn) < Vp,
re n
and
* 2
(4'180) ||Xno+1,0(Rno+l,a - (Rgo)gno)”no-l-l < Vno+1 -

Proof. The argument is similar to the proof of Proposition 4.10. We define for o € ¥,
(4181) Ga,n6 = Go N 67

(this is consistent with (4.160), when o = ()). We then observe with (4.7), (4.11), that
when Ly is large, for 0 € X, w € Gy oy, v € Sy

X Srir o llny = Xng e S o llmo = (X 2(G Sy + (1 = g0 ) (Rpy — By Dl
(4.182) (4.6),(2.2),(2.46) (4.17)
<

-5 _'_ e—RnO) S Vn6 .

c (Lné

Let us now assume that for n, with ny, < n; < ng, and ¢ € X, we have a decreasing
sequence of events, ny < n < ng, such that

(4.183) SUp P[G o \Goni1] < e o, forng < n < ny,
oEN

and such that on G, ,:

(4.184) SUp ([xXnz Spolln VX2 Spolln) < vn-

ZBESn

Then with Proposition 4.1, for o € X,

~ Ko U
PlGonn{ 5w (ol > it }] <
V€L, 41288, 170 s
(4.185) L g TS o
C(M) e fino < e hno |
Lﬂ1+1

We then define for o € ¥, (this is consistent with (4.167)):

~ Rp V.
(4186)  Gomer =Gom 0] swp Lol < 252}
UELn1+1Zd:S7L1,v?é® E’I’Ll
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and see that (4.184) holds with ny + 1 in place of ny. Moreover in a parallel fashion to
(4.169), for 0 € ¥, w € Gynyt1, U € Spyt1,

(4187) ||Xn1+1,v S:Ll-i-l,UH"l'i‘l <a;+az+as )

where a;,1 < i < 3, are just as in (4.169), with o replacing ) in the expressions entering
aj,as. The same reasoning (4.170) - (4.174) shows that when Lg is large, for o € X,
w € Gonyt1, and v € Sy 41t
* — a —-150

(4188) HX“H—LU Snl—l—l,canl-l-l <c (Hnl Kny gnlﬁ/3 + Lle V?Ll + Lnll—io—l) )

and that with (4.140) a similar inequality holds for x,, 1. g;il +10- This implies that
(4.184) is true for n = ny+1. This proves by induction (4.183) for nj < n < ng and (4.184)
for njy < n < ngy. We can then define for 0 € ¥, G, y+1 via (4.186) with ng in place of n;.
We then obtain (4.177), (4.180) by writing the analogue of (4.15) for Ry | — (RSLO)ZQO,
i.e. without the bottom line of (4.15), (incidentally we recall that (1.50) remains to be

proved, cf. Proposition 5.7 below). The claim (4.178) is now a straightforward consequence
of (4.5), (4.137), (4.177). This concludes the proof of Proposition 4.11. O

5 Repairing defects

We conclude the proof of Theorem 1.1 in this section. The main remaining task is to
propagate the part of (1.47) concerning Holder-norm controls at level ng + 1. In Section
4 we have performed surgery on the environment and removed defects occurring at level
ng = ng —mo — 1. We have shown that the kernels R} ,, ng <n <ng+1, 0 € X, cf. (4.7),
(4.8), describing the evolution at level n “after surgery”, were typically well-behaved
for Holder-norms, when w € Gy py+1, and that the complement of Uaez Gong+1, Was
“negligible” for our purpose, cf. Proposition 4.11. We now have to show that on “most”
of Gongr1, Rpyy1, and Ry, 1, the true object of our interest, are close in the Holder-
norm sense. To this end we will in essence use the smoothing effect of the kernels “after
surgery” to repair defects, as well as (1.48) to prevent any trapping effect of the defects.
The main step comes with Proposition 5.1. We will also prove (1.50), cf. Proposition 5.7,
and thereby complete the proof of Theorem 1.1.

We first introduce some additional notations. We recall that Z, & > 0, denotes
the canonical process on (RN, and that the laws Py, foroeXweQyce R?, with
corresponding expectation Ey , have been defined above (4.138). We let P; , stand for the

Yy,w?
canonical law on (RN of the Markov chain starting at y € R, with transition kernel
Ry . Tt describes the diffusion in the environment (whence the superscript e) w € €,
viewed at times k Lié, k >0, originating from y. We let £y , stand for the corresponding

expectation. When no confusion with (1.8) arises, we use the notation

Likewise we still denote with 6y, k > 0, the canonical shift on (R)N. With the notation
of (1.44), we introduce the event

G={we€W Juscrw =0, forallny <n<ng+1, x€ L, Z* N (5Tny11) ,

5.2
(5:2) for allve{l,...,2d5(d_1)}}.
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This is the place where we use the control on traps to make sure that G ¢ has negligible
probability. With (1.48), for n < ng and Proposition 3.3 when n = ng + 1, (we in fact
only need in these controls the case of A singleton and u, — 0) we see that when Ly is
large,

PGl< S ¢ (%)d -

(5.3 e 2 .
< emo +2) L (07T < L
(1.46)

With the notations of Proposition 4.11, (4.5), (4.136), we define for each o € X:
(5.4) Gomptr = Gomps1 NG C G, NGNG.

When Ly is large with (4.178), (5.3), we find:

55 Pl(UGonn) | SP[(U Conon) | +PET < 5 L.

ceY ceY

The next proposition is an important step in our program of “defects repairs”. Some
elements are reminiscent of Sidoravicius-Sznitman [25], cf. below (2.33) of [25].

Proposition 5.1. When Ly is large, for 0 € £, w € Gopot1, | with | flme+1) < 1,

sup | B¢ f(Zr)] — Eg lf(Zr)]] < LY with

(56) |y\§5n0+1 )
= (LZ:A) -1 (4.58) kno—i-l - 1.

Proof. We break the difference in (5.6) into three terms that will be separately bounded.
Recall from (4.4) that o = (071,...,03), where 0 < £ < {;. We introduce

~

o - V4
(5.7) K, = U B(0:,10D,), Uy = U B(ai, L Ln6+2> ,
i=1 i=1 5o

(3 3

and write for y € B(0, Dyys1), (cf. (5.6)),

Al = E;W [f(ZT), I{K(7 > T:| — E;;w [f(ZT), HKJ > T] ,

(5.8)  Ae= By, [f(Z0), 3 < Hi, <T| = By, [f(Zr), 3 < Hie, < T|,
A3 =E,, [f(ZT)u Hg, < %} - E, [f(ZT)v Hg, < g] ;

(incidentally note that Ay = A3 = 0, when o = ()). We thus have
(59) B2 [F(Z0)] = BLulf(Z0)) = A1+ Ay + A
We first bound A;. Note that when Ly is large, for y € B(0, ﬁnoﬂ), 0€X,we€ Gonost,

(5.10) Pl as, T<Tit

5 no+1 ?

64



indeed, T' < (Lpys1/Lny)? < LiOH/lOﬁng, when Ly is large, see also (4.7). Coming back
to the diffusion process, we can write, cf. (4.7):

Al = Ey’w [f(XTLQ, ), XkLQ, ¢ Ko—, for 0 S k S Tj|
(511) "0 "0
- Eva [f(XVT)7 XVk ¢ Kaa for 0 S k S T:| 5

where Vj, k > 0, are the iterates of the stopping time Lig ATy on C(Ry, R%), cf. (1.19),
that is:

(5.12) Vo=0,V; = LEL,O ATy, and Vigy = Vioby, + Vi, fork > 1,

(here of course (6;);>0 stands for the canonical shift on C(IR,,R%)). With (5.10), (5.11),
we see that:

A1 <2 > P, [T% o GmLzl > Li/, for 0 <m < k, T"6 o GkLz/ < Li/ ,
0<k<T 0 0 ng 0
(5.13) and X, .2 € T,0 11\ Ko, for 0 <m < k]

(2.2),(4.5) e 0
< 2Te ™ < e Frotl

We now bound A, and by the remark following (5.8), we may and will assume that o # ().
Note that:

(5.14) Ay < P |5 < Hi, <T|+ Py |5 < Hi, <T).

We can express both probabilities in the right member of (5.14) in terms of the diffusion
process in a similar fashion as in (5.11). Using analogous bounds we see that

(5.15)

e T s [T e
P |5 < Hi, ST| = Py |5 < He, < T” Pp—

Further since w € Gy ppr1 C G, see (5.4), it follows from (5.2), (1.44) with n = ng, and
the Markov property that for y as in (5.6),

(5.16) Py,w[ sup | X, — X.| < %] <(1- Cl)ZiO/S < e Ko+l

0<u<o<T 12,
0

With a similar argument as in (3.68), one sees that on the complement of the event that
appears in the above probability, X must have exited the open set Ule B(o ﬂ) by

29 4%
time % Lig' We hence find that

Py, [g < Hg, < T} <P, [va ¢ K,, forall0 <m < % , and Xy, € K,, for some
Yy’ <T,and sup d(X,,K,) > Lng _ IOEn/] + e finotl |
2 o<t I, 40, b
Introducing the open set:
(5.17) U= {z e R% d(z, K,) < Zg,; - 115%} ,

65



we see with a similar argument as in (5.13), using (5.10), that

P;w[g<HK0§T}Spiw[g<HKg§T/\TT Tz,{<Z + e~ fno+1

no+1? 2

(5.18)
< sup P [Hg, <TANTr,, | +e ot
zETn0+1\Z/{

Coming back to (5.14), (5.15), we find

(5.19) Ay <2 sup P7, [HKU <TA TTn0+1:| 4 e Fnotl |
ZEZL0+1\Z/{ '

The next step is to bound the first expression in the right-hand side of (5.19). To this
end for w € 27,41, we introduce the function:

ng, if DY, , > |z —w,
(5.20) () =94 . . "
sup{n € [ng,nol; |z —w| > D}, else,

and the stopping time (for Z,):

{ 1, when n,(Zy) = ng,
Tw =

(5.21) .
kn Ninf{k > 0: |Zy — Zo| = Dy, 51} else,

(recall ky, = (Lpn/Lyy)?, cf. (4.138), and D}, is defined in (4.10)). We write below n(z) for
ny(z). We also introduce the function

AL zeRY withy=d—2— 1
) 9 fy_ 100

zZ—w

*
DnoJrl

(5.22) fuw(z) =

Lemma 5.2. When Lg is large, for 0 € Y,w € Goppr1,w € 275041, 2 € (2T5041) N
B(w, L)), (cf. (1.40) for the definition of §), we have

(5.23) EZ fu(Z,)] < ful2).
Proof. When |z —w| < Dy, ., (5.23) is immediate. We thus assume that

def ) N (1+2)
(5.24) 29 = z — w satisfies |z > Dj, .1, and z € (2T,y41) N B(w, Ly, *’).

Consider 2 € R?, such that |z| < L|z|. Writing 2y = 2, we have
2 |20l

- 2\ —2
|20 + 2|77 = |20| 7" |20 + :\z0|—v(1+230.i+|w_|2) ’
2ol |20l ol
(5.25) = |Zo|_“’<1 — 2 (2% - Ty ﬁ) 41 (42 + 27) <Eo.x)2 +r(z0,:c)>,
2 20|~ l20l?/ 2 EY

3
with |r(zo,z)| < ¢ <ﬂ> )

| o]

after the application of Taylor’s formula to second order in the neighborhood of 0, to the
function (1+u)™"/2, u € (—1,1). Coming back to (5.21), with (5.24) in force, we see that

B2 ful 2] £ Jul(2) (1= 25 %o+ BLu 2 = 0] = s B2 12, — Zol?

2]z
(5.26) L2 |20l D \3
107429 po 42 . _ 2 n(z)
3 T B (G- (Zey — Z)Y e (22) ).
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Comparing the law of Z. under PJ  with R

Z,w

(), cf. (4.138), with (4.139), and
w € Gyni1, We see that when Ly is large, 0 € ¥, w € Gy por1, W, 2 € 27,11, With (5.24):

|E7 Zo) = di ) ,(z,w)| < e,

(5.27) o
} Z,w Tw - 0)i (Zm, - Zo)j] — Qip(z) 6ij Ln(z) - (WZ(Z),U)W (Z,w)} < e~ Fno ,

for 1 < i,57 < d, with the notation of (4.14). Using (4.179), (1.49), and once again an
analogous calculation as in Lemma 2.1, we see that under the same conditions as in (5.27)

(528) |d;:(z)’o(z, W)| < Kng Ln(z) Vn(z)s |:}7:L(Z),O'(Z7 w)| < Kng LEL(Z) Vn(z) -
As a result we obtain, (recall v +2 —d = —355):
o 1
(v+2) B2, [{Z0 - (Zn, — Z0)}?] — EZ || 25, — Zo]?] < ~Tog @ L2 )+ Kng L2 ) Vngz) -

Therefore for large Lo, 0 € X, w € @U,noﬂ, w, z € 27,41, with (5.24), we find

By lfu(Z:,)] <

Kng 7 2 An(z) _ D:;(z))g]
(5.29) fulz >[ T20] Linz) Vn(z) 2[z0|2 Ln(z)( 100 o ”"<Z)> +C< 20]
(5.24),(5.20) I
L) _ Chn(
S f (Z>[ |ZO| </€n0 Vn(z) |ZO| >:| S fw(Z>,
using (5.26), (5.28), and (4.17). The claim (5.23) now follows. O

Coming back to (5.19), (5.7), we see that

Ay < 20, sup sup P o Hp B(o:,10D, ) <TNTs 0+1] + e Fng+1
1<i<e zGTnO+1:\z—0i|Z%—5n6
0

(5.30) ~
< 2{y sup sup P" o Hz B(o.,10D,,) <T ATz, ] +e ot

L L,
<< Tn nO .
1<i<t z2€1ng+1: 1t nég\z oi| <=2 17

using the strong Markov property in the last step.

With (4.139), n = ng, and the Markov property, we observe that for large Lo, 0 €
27(") € Ga,n0+1> KAS ,];L()-i-la

(5.31) P2 sup |Zy — Zo| > (2, 3000 D, | < eFrov
0<k<T
As a result when z € 7,41 is such that for some 1 <1 </, L”O Dn0 <l|lz—0 < ZZO
0

with (1.14), (1.40), we find

(5.32) P, [H B(o:,10D, . <TA T7n0+1] < PZw[HE(ai,lof) < TB(O" L(10+5/2))] + e finotl
no 1N

We can then introduce Tclfi, k > 0, the iterates of the stopping time 7,,, cf. (5.21) with
w = 0;.

(5.33) 70 =0, 7}

g; [ep

k+1 k
= To'i’ ’To_:’_ et 'TO—Z- OQT(I;Z_ _‘_7_0.1_, fOI‘ k Z 17
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as well as

no

(5.34) N =inf {k > 0; Z,x € B(0;,10D,;) U B(o;, L2}
Using induction over k, the strong Markov property and (5.23), we see that
(5.35) EY [ fo:(Z:nrx)] is a decreasing function of k > 0.

Further observe that for z as above (5.32), P7 -as., on the event {Hg,, ,05,) <
) ng

T, 100/}, it holds that Zpx € B(oy, 10D,;), as follows from (5.21), (5.33), (5.34).
Hence with Fatou’s lemma, we find

(5'36> PZw [H§(0i7105n6) < TB ] < Eg,w[foz'(z'réi)a N < OO} < fcri(z> :

(05, L))

The above inequality together with (5.22), (5.30), shows that when L is large,

—(d—2-135)
Ay < Ky, < 0 ) + e finott
(5.37) 2(4_1> T\ B (1.14),(1.17)
; — 156 (14+a) 7 =(14a)~(motD) (1215 —15
< Ko L < Lyt

We now bound Aj. As in the case of As, we only need to consider the case o # (), see below
(5.8). We first introduce some notations. We consider the functions, (with w € G4 41,
and f asin (5.9)):

(5.38) Fe(k,2) = BS [f(Zr—p)], FO(k,2) = EZ[f(Zr_x)], 2 € R, 0< k< T,
We also introduce the probability kernels:

(5.30) Q°G(k,z) = ES,[G((k + Ty, Ato) AT, Zry, stonr—n))], 0< k< T,z € R?,
' Q7 G(k, 2) = EZ[G((k + Tu, Nto) AT, Zry pionr—1y)], 0 <k < T,z € RY,

with G bounded measurable on {0,...,T} x R?, U, as in (5.7), and

(4.138)
(5.40) to=rkn1z = (Lujss/Luy)”-

Loosely speaking, these kernels describe for the Markov chain in the true environment or
in the environment after surgery how the process initiated at time £ < T', and stopped
at the deterministic time T'A (k +to) quits U,. We also introduce sub-probability kernels
describing returns to K, prior to T or exit from %Tnoﬂz

R G(k,2) = EZ,[G((k + Hi,) AT, Zyye, nr—1): Hi, < (T = k) ATo g, ]
(5.41)
R7G(k,2) = B2, [G((k + Hi,) NT, Zpe nr—n))s Hie, < (T — k) ATs g

n0+1j| ?

with 0 <k < T, z € R?, and G as below (5.39).
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Coming back to the definition of Az in (5.8), we see using the strong Markov property
at time Hg,, analogous considerations as in the control of A; and (5.10), that for large

Lo,O' S Z,W c @mnoﬂ,y € B(O,Zjn0+1)1

|Az — Aj] < e Frot! | with

(5.42)

Ay By | Hie, < 5 ATy o Fo(Hi Z,) = F7(Hi Zi, )|

n +17
Applying the strong Markov property, we see that for 0 < k < T,z € R%:
Fe(k,z) — F(k,z) = Q°F°(k,2z) — Q7 F(k, 2)

= Q(F° = F7)(k, 2) + (Q° — Q) F7(k,2).

The next lemma will provide an analogue of (4.139) for the Markov chain in the true
environment (i.e. under P ).

(5.43)

Lemma 5.3. When Ly is large, for o € ¥, w € @U,noﬂ, 2 € 3Tny41, Ny <n < ngp:

(5.44) P sup |2y — Zo| > 300y D,,] < e7Frotr

Z,w
0<k<kn

with ky “E (L,/ Ly )?, and &y as below (4.2).

Proof. The argument is similar to the proof of (4.139). The probability in (5.44) coincides
with

(5.45) P.,| sup |XW — Xo| > 304y D,,] .
0<k<kn

On the event inside the above probability, X, exits the open set U defined below (4.142):

= ( U B(wi,6ﬁn)) U( U B(0i76ﬁn)>7

1<i<lo 1<i<l
where the w; are omitted when n = nf,. We denote with S the stopping time on C'(IR., IR%):
=inf {s >0, | X, — 2| > 4D, for all z € {w1>---,w20,01>---,02}}>

where the w; are omitted when n = n{. From the discussion above, with the notation
(1.18), the expression in (5.45) is smaller than:

~ _ (2.10)
(5.46) w8 < Lh, PxgulXpa > Dil] < )
E.o[S < LENTur, ., PxgwlXjo > Dy]] + e fmott < emFnott
using the definition of U, and (2.2) in the last step. This proves the lemma. O

We now work on the quantities that appear in the last line of (5.43). For 0 < k <
T, z¢€ %’Z;LOH, we can write:

Fe(k7z) - Fg(k7z) =
E¢[Hk, < (T —k

) o Hi, <(T=k)ATsq  f(Zroi)] +
B [Hr, 2 (T = k) ATag,  f(Zr-i)] =

— E7
B [Hi, 2 (T —k)NTsg, ., f(Zr-1)] .
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Note that when L is large ¢2 Dn0 < L2, so that with (4.139) and (5.44) when n = n,
difference of the last two terms of the above equality is bounded in absolute value by

e
B¢ [Hi, ATs 1, .,
—K I{
_I_ e ng+1 S e n0+1 ,

>T —k, f(Zrw)] = BZ [Hie, NTs g, o > T =k, f(Zry)]]

using in the last step analogous estimates as for Ay, cf. (5.13). Further the terms in the first
line of the right-hand side of the above equality are seen to coincide with R® F¢(k, z) —
R? F(k, z), after application of the Markov property at time Hg,_ A (T — k). Using
once again estimates as in the control of Ay, or in the derivation of (5.42), we see that
Re Fe(k,z) — R” F°(k, z) differs at most by e *mo+! from R*(F*° — F?)(k,z). Collecting
our bounds, we see that when Ly is large, 0 € ¥,w € G, not1, 0 <k <T, z¢€ 3 7;LO+1

(5.47) ((F¢ — F)(k, 2) — RE(F — FO)(k, 2)] < e "o+t |

Letting 4 € § Tno4+1 play the role of ZHcr in (5.42), and noting that in view of (5.39),
(5.44), when 0 < k' < T, Q*(K, '), {0, ..., T} X (3 Tpy11)%) < e "0t we see with (5.43)
and (5.47) that for 0 < & < T

(5.48) |(F* = F7)(K,yf) — Q° R(F* — F)(K.y) — (@ — Q) F7(K. y/)| < e~
Thanks to (5.43) the expression under the absolute value coincides with

(G49) [P QRQE - F) - S (QRYQ - Q| ().

m=0
Using the strong Markov property, (5.39), (5.41), (2.1)
Qe R* Qe((klv y/)v {O? s 7T} X (% 7;0-1-1)0) <
(

5.44)

Py [sup | Z, — Zo| > ~ Lio-l-ll < efrott,

(5.50)

Hence using (5.47) to transform (5.49), we deduce from (5.48), (5.50) that

1
(5'51> ‘ [Fe B R (Qe Re)2 (Fe . FO’) . ZO (Qe Re)m(Qe o QO’)FO’} (]{?/, y/)‘ < e fnot1
Note that (5.50) holds for (Q°¢ R¢)™ Q¢, m > 0, arbitrary in place of (Q° R¢) Q°, as follows
from the strong Markov property. We can then repeat the above manipulation finitely
many times and find that when Ly is large, for 0 € ¥, w € Goppt1, ¥ € i’];olrl,
0<KE <T:

[P P =@ ™ (= F) = S (@ R - Q)R #y)

0<m<ms

(5.52)
S ~fno+l )

with in the notations of (1.14), (1.17):

(5.53) m, = la (14 a)™"] +1.

Keeping in mind that y' plays the role of Zp, —and letting k" play the role of Hg, in
(5.42), we are now going to bound [(Q° R®)™ 1](K,y'), for 0 < k' < L, ¢/ € 1 T, 1.
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Lemma 5.4. When Ly is large, 0 € £, w € Gopos1, for 0< K <L o/ €17, 11,

(5.54) sup (Q°RY)™ ((K',y), [ TT]led)<Ln01jg1,

0<m<m
(5.55) (Q° R)™ (K, y/), [0,T) x RY) < 2L, .

Proof. We first prove (5.54). When m = 0, the expression that appears in (5.54) vanishes,
and we can restrict to the case 1 < m < m,. We can rewrite the quantity in (5.54) using
the strong Markov property, (5.39), (5.41), as the P -probability of a certain event
(loosely speaking expressing the occurrence of m successive possibly truncated departures
from U, and returns to K, prior to exit of %’]}LOH, with the m-th return taking place
sometimes during [27 — k', T — k’)). On this event since truncated departures have at
most a duration of ¢y, cf. (5.39), at least one of the return periods has a duration of at
least

T
( T — k/—m*to)/m*_4m*—t0.
As a result we have:
(5.56)  (Q° Re)m<(k’,y’), E T, T] X ]Rd) <m sup Pij[ oty < Hy, < T] .
Ze%ﬁlo{»l My

The probability that appears in the right-hand side of (5.56) is similar to the first prob-
ability that appears in (5.14), (y € B(0, Dy,+1) is now replaced with z € 27,4, and T
with % —tp). The same estimates leading to (5.37) now yield for L, large:

(5.57) m. sup PC, [i o < Hy, < T] <L,
Zegtzjno+l m

thus proving (5.54).

We now turn to the proof of (5.55). With (5.54) and using the strong Markov property
in the second inequality, we find

(@ ROY™ (K,9/), 0, T) x RY) < L0+ (@ RY™ (), (0.7 ) < RY)

5.58 .
B38) L 4 (sup Puu[Hr, 00mm < Tr oy AT])™
ZE% TnOJrl
The same argument employed in (5.16) - (5.18), shows that for z € 2 7, 1, (recall t, (240
kn6+3):
L, ~
(5.59) P, [d(Zk, K,) > % — 11Dy, for some 0 < k < to} >1—e Mo+t
0

so that we find with (5.7)

Pz,w [HKO- © GTUU/\tO < TT ng+1
e~rmott + E¢ [Ty, < to, Pg,

Ug At ¥

AT] <
(5.60) [

HKJ <Tr

no+1

AT

But for z € 7,,,.1\U, playing the role of 2Ty nigw 111 the last term of (5.60), we find just
as for (5.15):

(561) P |:}JK(7 < TT o1 T} < P [HKU < TT ot T] 4 g finott
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The first term on the right-hand side of (5.61) can be bounded in the same way as in
(5.30) - (5.37), to obtain with Ly large:

o CL"6+2 _% —Kn, —15
(5.62) P [Hy, < Tr, . AT] < z( e ) oo < g0

Coming back to (5.58), (5.60), we see that when Lg is large, 0 € 3, w € Gy ppr1, 0 < K <
%a y/ € %7;104-1:

5.63 e ROY™ (K /). [0.T ]R,d < L—% 6—% hing 1) ™ (1.15)&(5‘53) of 180
(5.63) (Q°R7)™ ((K',4),[0,T] x R")) < L, )7y + (£, + e "o*) < o

n+1
This proves the claim (5.55). O
We return to (_5.52), and observe with the help of the above lemma that when Lg is
large, 0 € ¥,w € G, ., for 0 < k' < %, y € %’];LOH,
_ 8
1

(5.60)  (F = FOK ) <e(Lyhi+ s [Q - Q) F(k2)])

kg% T,ZEKUO(% Tng+1)

We now bound the last term of (5.64). We consider k < 2T, z € K, N (2 T,,41), as above

and introduce (recall ¢, (20 Kt 13)

(5.65) k=inf{metoZ+T; m>k+ty}.
With (5.39), and the Markov property in (5.38), we can write

Q° F7(k,z) = ES [F7(k + Ty, Ato, ZTUUMO)}
(5.66)
= E; [FZ

ZTUU/\tO w

[F(k, Zr_p)]

where k = k + Ty, Aty is not part of the inner expectation. The same calculation for
Q% F?(k, z) and the strong Markov property yield:

(5.67) Q° F7(k,z) = EZ [F°(k, Z;_,)]-

Using controls on the size of displacements of Z, in a time interval of length t, or 2t,
under P7, or P, cf. (4.139), (5.44), we see that:

zZ,w?

(5.68) sup (Q° — Q%) F7(k, z)| < e "o+t 4 var F'9, where

k<2 T,2€Ko(§ Tng+1)
o def o(1. o7, *
(5.69)  var F* & sup {|F (R, 21) = F7(k, 22)|, 21,22 € Togrns |21 — 2| < D}y s,
ke (toZ+T)N [O,gT”.

We will bound var F'? with the help of the smoothness properties resulting from (4.179)
and (5.38). We introduce a cut-off function h with values in [0, 1] such that with (2.1):

(5.70) h=1on27,,.1, h=0o0n (g %OH) , and |h|pe41) < 1+ Lﬁc
no+1
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Lemma 5.5. For large Ly, 0 € 3, w € Gypor1, 1y <1 < ng,

(5.71) 1Ry, o llngrr = (R )" gt < 1+ b v

with v, defined in (4.17), and k, 139 Li/Lié.

Proof. The equality in (5.70) follows from (4.9), (5.69). Then with (4.9), (5.70), we can
write

(5.72)  h(RYy ) =R, E R+ hS;, =hR)+hS;, +h(S;, —55,).

From (1.29), (1.55), (5.70) we have

C

8 )
no+1

(5.73) Ih R lgsr < 1+

and from (4.140) we deduce

~ B ~ B
(5.74) 111(Sh0 = SNl < (Z22) T IR(S), = i)l < (F2) om0 < e,

n n

If g is such that |g|me+1) = 1, and z € L, Z? such that x,,h # 0, we can find G such
that:

~ ~ ~ g
(5.75)  SuppG C B(w,4D2), G = g — g(x) on B(x,3D%), |Gl < Hn< Ln ) .

Lnngl

We thus see, cf. above (4.12), that with (1.49)

Ox QO ~ —K O* Ln s —K
|Xn,:c Sn,ag|(n) S |Xn,:c Sn,a G|(n) +e S ”Xn,:c Sn,O'HnK:n(—) +e

Ln0+1
= Knyn<L +1> '
no

As a consequence we see with (A.3) from the Appendix and (5.70) that
Ox Ln0+1 p O
(5.77) |h Sn,o g|(no+1) < (L—) |h Sn,o g|(n) < Fn Vn = Fn Vn |glnot1 -

Collecting (5.72), (5.73), (5.74), (5.77) we obtain (5.71). O

We return to the task of bounding (5.69). With & as in (5.69) we have T—%—k‘no €ty N,
and hence we can write

(5.78) T—k—ky= > Uk, with u, suitable integers in [0,2 —1).

n{+3<n<ng
Then for z € 7,41, f as in (5.6), (or (5.9)), we have:

7 (1. 5'38) * —k * Y * Un! kn/ * UnKRn
Fo(k,2) P2 (Ry, )75 f(2) = (Ry, )Fmo Ry, ) e (R, )i f(2).
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Using (4.9) and (T — k) 5% < 6 L2 4, cf. below (5.10), we find

Fo(k,z) = R, (W Ry 5,)"0% . (R R, )™ .. (h R, )" f(z
(5.79) (k,2) = Ry o (W By s0) (DR g)™ - (h By o) f(2)

=R, [(2),
where in view of (5.71), (5.78)

- (1.15),(4.17)
650 o< [ Qtrw)fi<en] ¥ mune} £ e

ng+3<n<ng ng+3<n<ng

*

So we see that for zq, 20 € Ty 41, with |21 — 25| < Dn6+3’

(5

~ ~ .79) ~ ~ ~
Fo( ) — Fo(F )] < |RO, F(z) — RO, Fle)| + 1S5 0 Fz1) — S F(z2)

(1.49),(1.56) ¢ D*,

D*, 8 (4.17),(4.1)
< e (), S
(4.179) Ly, Ly,
(5.81) (T —(1+a)~(mo=) _(Hia+4(aﬁ+1)_5(1"‘“)7(’”071)_(%_6)(1+a)7(m0+2))
K”O <Ln0+1 _I_ L’no—l—l )

(1.14),(1.17) _( 5 s L_L_L(ﬁ_(;))
—(B+6) (7 -2 I(+a) T+a 100 100\4 —(B+4842a)
(1§40) Lnga (L”Oil + Lot ' ) < ¢l :

So we have shown that when Lg is large, 0 € ¥, w € @(WOH,

(5.82) var F7 < ¢ L, 7102
Collecting (5.42), (5.64), (5.68), we obtain since 3+ 0 + 2a < 5,
(5.83) Ay < e L0020

Substituting in (5.9) the bounds (5.13), (5.37), (5.83) we now obtain (5.6) and this con-
cludes the proof of Proposition 5.1. O

As an application of Proposition 4.11 and 5.1, we have
Proposition 5.6. When Ly is large, 0 € ¥, w € Gy ppr1,
2 —(6+a
(5.84) Xon0+10(Ragr = (B0 g < € L35
Proof. We have
2
IXno+1.0(Rug i1 — (B9)70)|lng1 <
, (4.180)

(585> ||Xn0+1,0(Rno+1 - R;;o-',-l,o)”no-i-l + ||Xno+170(R;;0+1,cr - (Rgo)éno)”no-i-l <

HXTL0+1,0(RTL0+1 - R:Lo+1,0’)||n0+1 + Vno+1 -
With the notation of (5.6), and with (4.9), we also find that:

Xno+1,0(Brot1 — Ry 11.5) = Xno+1,0( Ry (R )T — RZ&,J(R%,J)T) =

(5.86) . 2N
Xno+1,0 Rng((Rng)T - (Rn67U)T) + Xno-i-l,O(Rn(’) - Rn67g)(Rn67U)T :
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With (1.60) and (5.6), we see that

% Ln 1 d+a (6+a
B8T) 1Ry Lo 5, (Rog)T = (B ) lgir < (F228) e 1, 10040 < o 05
L)

Also note that when [g|oc < 2 and gl Bugs) — 0 then with the notation (1.57),
Xnot+1,0 Bty § = Xngt1.0 Prw Pr2, 1, g, and from inequalities such as in (2.10), and from
"0

(1.17), we see that |1p(,p

7L0+1)

P2 1,9l < e_CL"fJ, so that using (1.59) as in the proof
7LO

of (1.60), we find that [Xng11,0 Ry 9l(nosr1) < e ™. Coming back to (5.87), we hence
obtain:

* 5 a
(5.88) Xno+1.0 By (Rg)™ = (R ) lngr < ¢ L 25®.
We now turn to the last term of (5.86) and observe that:

. (T 70 R
Ruyy = Ry o =" (1= go)(Ruy — BY) + go(Ruy — Ruy) .

With the same argument employed above (5.88), cf. (1.20), (1.37), for the notation, applied
to the last expression of the following identity

Xno+1,0 go(Rn(’) - Rno)(R* ) = Xno+1,0 gU(Rn(’) - Rn()) XDpy+1 (R;kLg,a)T
% def
Xno+1,0 Yo Rn6(1 - XDn0+1)(Rn6,g)T = Al + A2 )

we see that ||Az||n,+1 is smaller than ¢ . Further just as in (5.80) we see that:

IXDyr (Brg ) lngen <

and together with (4.6), (2.2), (2.46) we obtain:
(5:89)  [[Atllng+1 < Xno+1.0 9o (Sny = Su) XDrgir (B )" llmgr + €700 < et

In view of the identity below (5.88), to control the rightmost expression in (5.86), it
remains to bound ||Xng+1,0(1 = go) (Rpy — R%)(R;&’U)THHOH. To this end in analogy with
(1.20) we define the probability kernel

Ry (2, dy) = Pro[Xy2 ape, € dy], @ € R¢ w € Q, with
nO mn

5.90
(5.90) T, = inf{u >0, X} > D:Z}, cf. (4.10), (1.18) for the notation .

As in Lemma 5.3, see in particular (5.46), we see that when Ly is large, 0 € ¥, w € Gy g1,
for y e B(Oano-l-l)v

. Dz, k.,
wa[ L2, > 0:| <e M.

"0

Then with a slight variation on the proof of Proposition 2.5, for x € L, Z*NB(0, Dpyt1),
(5.91) ||Xn(’),ac(R* — Ry )|y < <e "
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Employing a similar identity as above (5.89) in the first inequality, and (5.91) in the
second, we find

(1= o) (R — B )(R2y ) [lnotr <
o t1.0(1 = go) (R = R, )X D, (B )T ||no+1+
IXno1,0(1 = go) Ry (1 = :XL»m+4)(f% o o) g1 + €0 <
(1= 9o) (B = R0y ) XDrgar (B ) llngrn + €770,

||Xno+1 0 9o

(R
— 90) (R

[Xno+1.0
with the same argument as applied above (5.88). Note that thanks to (1.60), (4.6), (5.91),
1(1—g0) X%’x(R:& — R26)||n6 < ché, with x as above (5.91). For f with |f]@m+1) < 1,
and writing @ = (1 — ga)(R;% — égé)’ we also find
(592) Xno+1,0 Q XDn0+1 (R ) .f Xno+1,0 Q XDn0+1( :Lf),o)kno f
where f just as in (5.79), (5.80) satisfies
(5.93) Pl < e

Further if z € Ly Z is such that d(x, Supp Xno+1,0) < 30V/d Ly, we can use a cut-off
function and construct Hy, Hy supported in B(z, SD;%) (where xp, .,(-) = 1), such that
in B(z, 2Dy, )

Hy coincides with R F) — Ry flz),

(4.8),(4.9)

(5.94) H, coincides with Showc f( )= Snoo f( ) (R;‘;g),o)’“"o f()

— (Ry, Mo f(x) — RS, F(-) + R, flx),

and so that they satisfy the bounds

(5.95) | Hi |y

f{n/ |H2|(n/) < Ko’
0 0

(156) Ly o~ (4179) <Ln,0 )6
e v,
) ng no

no

As a result we obtain

Xty @ XD 11 (Bing )" Fling) < o @ Hil () + X0 @ Hol o)

(2-2)é4~6) 8 (L"6 N <L"6 )6 )
l%n’ / - VTL .
(535) 0 "o Lno Lno ’

We thus find

IXno 1,001 = o) (B = R )(Rey ) llng1 <
L g L, \1-8 _
3 no+1 n K, (6+a)
ong, Lo <L—20> ((LHZ) ) e < LY,

using similar calculations as in the bottom lines of (5.81). Collecting (5.88), (5.89), (5.96),
we obtain (5.84). m

(5.96)
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Before concluding the proof of Theorem 1.1, we yet have to control the difference
Qno+1 — Ang-

Proposition 5.7. Under the assumptions of Theorem 1.1, when Lg is large,

_ 9
(5.97) Qg 41 — ng| < Lt F107°

Proof. Recall the definition of v, in (1.22). In analogy with (2.5) we consider the function,
cf. (1.37) for the notation:

|2
(5.98) F(2) = Xy (2) i 2 € RY,
no+1
so that | f|mo+1) < Kngt1, and:
(1.22) =
(599> Cno+1 = E[Rno-i-l f(0>] :

We denote with € the event

ﬁz{wEQ; for |y| < 30Vd Lyys1, Pyo[Xis > ] Sexp{— ! },
’ no+1 Dnngl

(5.100) _
for all v > Dno-i-l} N{weQ; forallz € L,, Z*N (5T5041), ¢ € By, (w)}.

With (2.9) and (1.47), we see that when Ly is large,

~ L2 d (1.14),(1.15)
(5.101) PIY] < - LM +c< F“) LM e
ng

Then for w € Q, we see that (cf. (1.37) for the notation):

[Rugi1 F(0) = (RO, + X5, ,, Sn0) ™ F(O)] < |Rugi1 £(0) = Rugs1 f(0)] +
(RS, + Suo) ™0 £(0) = (RS, + X5, ., Sno) ™0 F(0)] < e7rovt 4
> (Ruo)* (1= Xp, ) Sno (RO + X5, Sno) 071 £(0)]

0<k<t

using (2.46) with n = ng + 1, and perturbation expansion in the last step. Since R?LO +
XBogir Spo = (1 — X5n0+1) R) + XB,, ftny contracts the sup-norm, we see with (5.100),

that when L is large, for w € Q:

~ ) e
(5.102) |Rpos1 f(0) — (Rp, + XBry Sg )0 F(0)] < e7Fmott
Using perturbation expansion as in (4.15) we find that for all w € Q:

(RO, + Xp, ., Sno)h0 F(0) = (RS,)f%0 £(0) =
Y (RO, ,, Sno(B,) 07 £(0) +
(5.103) 0<k<e2, nott
Z X5n0+1 SnO (RgLo)kl e X5n0+1 SnO (RgLo)km f(o) .

kot +km+m=0;
ki>0,m>2
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~ (2.2),(2.46)
Further for w € Q, ||X5n0+1 Sl < ceL;?®

is smaller in absolute value than:

so that the term in the last line of (5.103)

no?

52 _
> (e L™ Kngs1 = fing1 [(L+ e L) o — 1 — el Lo
(5104) k0+"'+km+m:£2
R>0m>2 < [ ~26+4a
i20,m < Fngt1 Loy

with ¢ denoting the same constant in both members of the equality, and using a similar
argument as in (4.172).

Coming back to (5.102), (5.103), noting that (RS, )" "o f(0) = P, L2, f(0), cf. (1.21),

(1.54), and that in view of (1.49) i) and (5.98) this quantity differs at most by e™"o+?
from do,,, we see that for w € :

[Rugs1 f(0) = dan, = 35 (RS X5, Sno(RD,) ™0~ f(0)] <

0<k<Z

(5.105)

where we used (2.46) with n = ny.
Observe that for z € B(0, 2 ﬁnoﬂ), with (1.49) i) and (5.98),
|- 2

sup [(RS,) o~ L(f — g)(2)| < et with g(-) = T
0<k<? no+1

Hence with (5.105) we see that when Ly is large, for w €

’Emﬂ F(0) — devn,—

- 25,10 (z,w) ’Yno ) ‘
(5.106) ngzgzﬁ PanOkL%O (0,dz) XDpgt1 (2) ( L2 ., Z+ Z LnoJrl =
Fong41 L 25+4a )

In view of (1.24), (1.25), the P-expectation of the sum in (5.106) vanishes. Hence with
(5.101) we see that for large Lg:

~ N 2, (2, w) ) Tl
‘IE [Q, ogkzgeg Pongrrz, (0,d2) XDnO+1(Z) <m Zjl L2 ., ﬂ ‘ =

(5.107)

2 10 9
Kng U, Ln0+1 < Ln0+1

So using (5.101), (5.105), (5.107), we see that when L is large

d‘ano-l-l - Oén0| < |]E[§no+1 f(()) - danov QC” + ]E[ﬁ'“no-i-l f(()) - danov ﬁ” <

(1.14),(1.40) 14935
K'no—i-lL 20+4a S Lno( 10) y

and (5.97) is proved. O

78



We can now conclude the proof of Theorem 1.1. We have just shown (1.50) and there
remains to complete the proof of (1.47) with n = ng + 1. With (5.84), we see that when
Ly is large, for 0 € ¥, w € Gynp+1,

(6
||Xno+1 0 Sno-i-l”no-i-l < CLno-:l_a + ”Pa N Pan0+1ng0+1 ||no+1
(0+a) (5.97) —(6+a)

<anOJrl + clangr1 — Qng| < cL, 1,

using in the second inequality a similar bound as in (4.173). Further with (5.5) we find
P{(U,css Gomos1)] < == L;ﬁ(} These bounds together with (2.9) and (2.46) show that

1 1 - _
PO ¢ Buyi1 ()] < (55 + 75 ) Lot < Lt

This concludes the proof of (1.47) for n = ny + 1, and hence of Theorem 1.1. O

6 Invariance principle, transience and homogeniza-
tion

In this section as mentioned in the Introduction, we apply Theorem 1.1 and prove an

invariance principle and transience for isotropic diffusions in random environment that are

small perturbations of Brownian motion, cf. Theorem 6.3. We also provide an application

to homogenization, cf. Theorem 6.4. We begin with a lemma that is helpful when applying
Theorem 1.1.

Lemma 6.1. When Lg is large, for w € Q, 0 <n <mg+1,
1 .-
(61) ||Xn,O(P1,w - Pl) PL%—IHn < 1_0 Ln57

cf. (1.17), (1.38), (1.40), (1.54), (1.57) for the notations.

Proof. We recall the convention L_; = 1, see below (1.15), and extend using this conven-
tion the definitions | - (), || - |ln; Xne, to the case n = —1, cf. (1.28), (1.30), (1.38). We
also introduce the probability kernels, see above (1.21) for the notation

(6.2)  Pro(zdy) = Pyu[Xinr, € dy], Pi(x,dy) = Wo[Xiar, €], © € R, where

(6.3) T i=inf{u>0, X:>L{"}.

With the same proof as in Proposition 2.5, using exponential inequalities, cf. [23, p. 145],
in place of (2.45), we see that for large Ly, for w € Q,x € Z,

1/10

(6-4) -1 (Pro — ﬁl,w)“—l VIx-12(Pr = P1)|| < e o
Hence it follows that for 0 < n <mgy+1,
IX—12(Prw = P1)Pra_il -1 < [[X-12(Prow — Pro) Praall- +
(6:5) Ixc1e(Pro — Pr)Poa o1 + Ixcra(Pr — P Prail|oy < cem™
IX-12(Pro— PPy
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With a similar argument as in (5.94), for 0 <n < mg+ 1, and f with |f|n) < 1, we can

construct with a cut-off function, a function H supported in B (x, 3L(1)/ ' such that:
(6.6) H agrees with P2y f — P2y f(z) in B(:E,2L(1)/10) and |f[|(_1) <c iom :

where (1.56) has been used for the last inequality. We hence find that with large Lg

(1.62),(6.4),(6.6) 1

IX-12(Pry — ﬁl)PL%—l fley = IX-12(Pro — ﬁl)H|(—1) < cLy L*

and hence with (6.5), (6.6):

1Xn,0(Prw — P1) Prz_illn < LE [[Xno(Prw — Pr) Prz_1]| -1

; PRRNCET
< Li(cem i 4 e L LY < L0

(6.7)

This proves our claim.

O

The next proposition is instrumental and enables to construct good couplings of the
diffusion in random environment with Brownian motion. From now on we specify the
choices of v =2, § = %,a, o, 0,0, C, Mo, M, cf. (1.5), (1.13), (1.14), (1.32), (1.43), (1.46).
In accordance with the convention concerning constants started above Theorem 1.1, con-
stants will solely depend on d, K, R in view of the choices we just made. We denote with
X,,t >0, and X?,¢ > 0, the canonical processes on C'(IR.,R%)2, the space on which we

will construct the coupling measures.

Proposition 6.2. (d > 3)

Given K > 1, R > 0, there exists ng > 0, depending only on d, K, R, such that for

a(z,w), b(z,w) as in (1.2), satisfying (1.4), (1.7), (0.4), and

(6.8) la(z,w) = I| < no, |b(z,w)| < no, forz € R',we Q,

then there is an event Q with full P-measure and a finite N(-) on Q, such that for w € Q,

when n > N(w):

(6.9) for all x € L, Z N (4T,,43), x € By(w), (cf (1.32), (2.1) for notations),

and for any y € R® there is a coupling measure vay,w on C’(R+,]Rd)2 such that under

Qnyws
(6.10) XY is distributed as X,,,. under W,
(6.11) N-AT27n+3()?) is distributed as X'/\TZTnJrS under P, and,
(6.12) Qnyw| sup |X, — X9 >3D,] < L;%?.
usL g
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Proof. In the sequel we use the expression “small enough 7,7, in place 1y < ¢, with ¢ a
constant, with the meaning explained above Proposition 6.2. From now on we assume
no < 1 small enough so that (1.3), (1.5) are satisfied. We now choose constants L, and
¢y according to Theorem 1.1, Lemma 6.1, and such that for all n > 0, (recall W} denotes
the Wiener measure)

i) ifin (2.45), % = = (D,/D,), then e™** in (2.46) is smaller than = L°,

N =

.. 1 4ov 1
ool <= — = >
ii) WO[XL% > o] < ) exp{ Dn}’ forv > 4:Dn,

i) (E70[|X531%) + D) Wa| Xi > 2] < 5
. Por2 — P2 |n
V) [Xn,0ln) _ sup | L|’;_QI|L”| < Ly, cf. (4.173),
s<a#a’<4
and
(142
(6.14) S ot L
n>0 10

We have now specified Lg, and we will first see that:

for ny small enough, (1.47), (1.48), (1.49) hold for all

1
n02m0+1,and |Oéo—1‘<ﬁ.

(6.15)

To this end, first recall from (1.9) that for w € Q, € R?, there is an (F;)-Brownian
motion 3, such that P, ,-a.s., for all ¢ > 0,

N[

t t
(6.16) Xy=z +/ o(Xs,w) dfs +/ b(Xs,w)ds, with o(-,w) = a(-,w)
0 0
Note that for y € R, w € Q, o(y,w) — I = (a(y,w) — I)(o(y,w) + 1)~ so for small 1,
y € RY, w e Q, with (6.8),
(6.17) |o(y,w) =1 <cnp.

Further from the exponential martingale inequalities, cf. [23], p. 145,

Px,w[sup | /OUO(XS,W) dBs — Bu| > U} <c eXp{ - m;—2}>

v<t not

(6.18)
foru,t >0,z € R, weq.

Choosing 71 small, with (6.8), (6.16), (6.18), we see that for w € Q, 0 < n < mgy + 1,
r€L,Z% ACC,(x),vy€{l,...,2d5% 1}, and the notation (1.44),

(619) Jn,x,A,*y(w) = 07

so that (1.48) holds for 0 < n < mg+ 1. Likewise with (6.13) ii), we see that choosing 7
small we can make sure that for w € Q, 0 <n < mg+ 1, y € RY,

(6.20) P, .| z% > ] < eXp{ — DL}’ for allv > D,, .
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Further we have

Xn0( R — Pr2) = Xno Prw(Pr2—10 — Pr2-1) + Xno(Prw — P1) Pr2 1,

and with (1.60), (6.1), (6.18), it follows that choosing 7y small, for w € 2, and 0 < n <
mo + 1,

1 .-
(6.21) X0 (R = Prz)lln < 7 L3

Recall that, cf. (1.22)
1

“n = a1z

Eo[|Xzznm, 7],
and note that for small 1y, with (6.13) iii), (6.18), for 0 <n < mg + 1,

|Eol|X 12 ] — Eol| X2z, Pl < Eol(IX 122 + D2), T, < L2]

1 ~ ~ 1 s ~ 1
< (B1Xs3 ]2+ B(R[sup 1. 2 5] + A swp | [ (0(0,w) - nas| = B2))
s<L2 4 0<s<L2'Jo 4
<L,
— 20
So when 7 is small enough, for 0 < n < mg + 1,
1 1 (6.16),(6.18) 1
(6-22> |05n - 1‘ < m + m ‘EOHXL%P] - EO[WL%P] < ma
and hence
(142
1) ‘an - an+1| < Ln(1+10)570 <n <mp, and
(6.23) 1 1
ii) ane[1,4]<:[E,QVD,forOSngmo—l—l.

This proves that (1.49) holds for 0 < n < mg+ 1. Then observe that for 0 < n < mg+1,
w € €,

HXn,O gn”ﬂ < ”Xn,O(gn - Sn)”n + ||Xn,0(Rn - PL%)

so that using (6.20), (2.46), (6.13) i) to bound the first term in the right-hand side, (6.21)
to bound the second term, (6.13) iv), (6.22), (6.23) ii) to bound the last term, we see that
when 7 is small, for w € 2, 0 <n < mg + 1,

In s

|n + ”Xn,O(PanL% - PL%)

(6.24) 1m0 Salln < 5 Lo + 3 La® + & Lo L,® < L.
Hence with (6.20), we see that for small 1y, when w € Q, 0 <n < mg+ 1,
(6.25) 0€B,(w).

We can now apply Theorem 1.1, and with (6.14) note that oy — 1| < & implies that

10
(1.49) remains also satisfied by induction, so that (6.15) is proved.
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As a next step observe that for n > mg + 1,
IP [for some x € L, Z* N (4T543), © ¢ Bo(w)] <

c <L§+3>d LT—LM() (1§46) cLid(1+a)3_100d(1+a)7n0+2 S CL;QSd ’
and this last quantity is the general term of a convergent series. With Borel-Cantelli’s
lemma, we see that there is an event  with full IP-measure, and a finite N(-) on €2, such
that when n > N(w), (6.9) holds.

Let us now fix w € Q. Given n > N(w), we denote with i some [0, 1]-valued continuous
function with value 1 on 27,3, and 0 on (37,.3)¢. With Proposition 3.1, we have for
y € R? a coupling measure Qn,y on (]Rd X ]Rd)]N, under which the canonical processes

X k>0, and 72, k > 0, have the laws of the Markov chains on R? starting at y with

respective transitions R, ;, cf. (3.4), and R2. Using product of bridge measures in time
L? between z, 2’ € R?

in’ = (h(l‘) pL%,w(zv Zl) + (1 - h(l‘)) pomL%(Z> Z,))_l (h(x)pL%(Zv Zl) le,/;%’,w
+ (1= 7(2)) Panrz (2, 2) PE2)

2 2
with PZL r, , and PZL ", respectively denoting the bridge measures in time L2 between z, 2/

for the diffusion in the environment w, and for Brownian motion with covariance «,, I, to
interpolate between times k L? and (k+ 1)L2, for the first canonical process and product

of bridge measures PZL7 il, to interpolate between times k L2 and (k + 1) L? for the second

canonical process (so that conditional on Xy, k > O,Yg,k > 0, all these bridges are

independent) we can construct a coupling measure Q,, , ., on C*(R, IRd), y € R?, so that
(6.10), (6.11) holds. Then using (3.6), (6.9), (1.39), we find:

@n’va |: sup ‘)’ZU - 5(:3‘ Z Sﬁn} S

“ﬁLi+3
(6.26) . L
(52) tro ey w2 (F2) e < 1)
when n is large enough. Hence increasing N(-) if necessary, we see that for w € Q, (6.10),
(6.11), (6.12) holds, and this finishes the proof of Proposition 6.2. O

We are now ready to state and prove our main applications.
Theorem 6.3. (d > 3)

With no(d, K, R) > 0, as in Proposition 6.2, when a(z,w),b(z,w), as in (1.2), satisfy
(1.4), (1.7), (0.4) as well as (6.8), i.e.

la(z,w) — I| < no, |b(z,w)| < no, forx e ]Rd,w €N,

then IP-a.s.,

— X.; converges in Py ,-law, ast — oo, to a Brownian motion on
(6.27) Vi

R with deterministic variance o > 0,
(6.28) for allx € R, P, ,-a.s., tlim | X¢| =00
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Proof. We keep the notations of Proposition 6.2. We first prove (6.27). From (6.23) we
know that «,, converges and we write

(6.29) o* lim an< e sz]) .

The claim (6.27) will follow once we prove that for any w in €, in the notations of
Proposition 6.2,

(6.30) ,}g& EOM [F(% Xt)] = EWO[F(XUQ-)]v

for any F on C([0,T],IR%), T > 0, bounded by 1, Lipschitz relative to the distance function
(6.31) Dy(w,w') = sup |w(s) —w'(s)| A1, w,w" € C([0,T], R,

s<T

with Lipschitz constant 1, with a slight abuse of notations in (6.30). For ¢ large we define
the integer n(t) > 0, such that

(6.32) Li(t)-ﬁ-l St < Li(t)-&-Z )

and observe that for w € Q, F as above and large ¢
e

0= (3 )]~ B [P K]
(2o )]~ (4 )

aalt) = | B0 [F (v, X.)] - EYF (X))

X,tﬂ . EWO[F(XU?)]‘ < a1 + ag + as, where

(6.33)

Y

Y

and we have used Brownian scaling for as(-). From (6.29) and dominated convergence,
we see that

(6.34) lim a3(t) =0.

t—o0
Further when ¢ is large,

(6.32)

ar(t) < 2Py [Tz, s < Tt < 2Pyu[Toz, s < T Ligyia)

(t)+3 (t)+3

(2.10)
< c exp{ — chL(t)+3}, so that

(6.35) lim ay(t) =0.

t—o0

As for as(t), using the coupling measure én(t),o,w from Proposition 6.2, we find with (6.10),
(6.11), that for large ¢
C[ete e o)~ )
a2(t) ‘E ' |:F<\/E X('t)/\T2Tn(t)+3(§) d \/E X't S

?) X X) XO 6.12),(6.32 n
EQn(t),O,w [ Sup | U/\TQTTL(t)JrS (X) 'u.| :| ( ) ( ) 3Dn(t)
u<Tt \/E

+ L) + ceFnwss,



so that
(6.36) lim ay(t) =0.

t—o0

Combining (6.34) - (6.36), the claim (6.30) follows. This proves (6.27).
We now prove (6.28). When n is large, it follows from standard estimates on Brownian
motion and (1.49) that for |z| = L,41,
Kn

6.37) W.[X,. . exits B(0,2L,.») before time L2, or entering B(0,4D,)] > 1 — -2
n+3 g

n

Then for w € €, with Proposition 6.2 and (6.37) we see that for large n and |z| = L, 11,

(6.38) Qo [)Z' enters B(0, L,,) before exiting B(0, L,42)] < L% + % < % :
With (6.11), we thus see that for large n and |z| = L1,
KRn _

P wlHp0,0,) < TB©,Lny2)] < 7 = ey
so that with the strong Markov property we find:
(6.39) Pl Hp,y = o) = TT (1= o) — L.
It now follows in a standard way that when w € Q,
(6.40) for z € R, Px,w[tlim | Xy | = oo} =1,
and this proves (6.28). O

We conclude this section with an application to homogenization in random media.
Given f, g bounded functions on R¢ respectively continuous and Holder continuous, under
the assumptions of Theorem 6.3, for w € 2 and € > 0, there is a unique bounded solution
of the Cauchy problem

(6.41) 8tuE:Leue+gin(0,oo)><le,
. ue|t=0 = f>
where
1 d x 2 d 1 T
(642) Le = 5 i’jZ:1 aij(?w) 82-]- + Zzzl E bl(;,w) 82‘,

see for instance [9, Theorem 12, p. 25|, and [10, Theorem 5.3]. The asymptotic behavior
of u., as € — 0, is intimately related to the invariance principle proved in Theorem 6.3.

Theorem 6.4. (d > 3)

Under the same assumptions as in Theorem 6.3, on a set of full P-measure, for any
f. g as above, the solution u. of (6.41) converges uniformly on compact subsets of Ry x R*
to the solution of the Cauchy problem

{ Oy ug = 0% Aug + g in (0,00) x R,

6.43
( ) ue|t:0 = fv

with o? as in (6.27).
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Proof. Consider w € €, (cf. Proposition 6.2), and ¢ > 0, with [10, Theorem 5.3], we can
write

(6.44) Ue(,2) = Eyjeu [f(exs/e2) - / g(e X, e2) dv], for s > 0,2 € R
0

Letting e ! play the role of ¢ in (6.32), very similar bounds as in (6.33) - (6.36), with some
obvious modifications for the bound above (6.36) yield that as e — 0,

u, converges uniformly on compact subsets of Ry x R? to

(6.45) ol 1) = BV [ f(X,) ~ /0 9(Xoa) o]

and our claim now follows. O

The proofs of the last two theorems illustrate the fact that the measures constructed in
Proposition 6.2 offer a very quantitative and handy comparison of the isotropic diffusion
in random environment with Brownian motion.

A Appendix

This appendix collects several results concerning the Holder-norms | - |y, || - [|n, cf. (1.28),
(1.30). In particular the effective control of these norms with the help of wavelets is discussed
in Proposition A.2. We begin with the convenient

Lemma A.1. (n >0,L, asin (1.15), 3 € (0,1))

Consider a non-empty index set I, f,(gi)icr, scalar functions on R, (x;)ier, points of RY,
such that

(A.1) f=9i, on B(x;,2Ly,),i €I, and
(A.2) Supp f C U B(z;, Ly), then

1€l
(A.3) |y < 3s161]p |9il (n) -

Moreover if f is a scalar function, I' > 0, and

(A.4) sup [f(z)] < T,
zcR4
—y P
(A.5) |f(x)— f(y)| <T ‘IL Y17, for x,y in the open Ly-neighborhood

of the support of f and |z —y| < Ly,
then

(A.6) [flny < 3.
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Proof. We first prove (A.3). Note that

|floo < sup |giloo s
el

and for z,y in R¢ with |z —y| > Ly,

G0

<2 iloo -
n ’1’ o y’g — Sl;p ’gl‘OO

On the other hand, when z,y are distinct points of R%, with |z — y| < L,, and say x € Supp f,
then x € B(x;,, Ly,), for some ig € I. One then has

o @) = )] ) 1y lal@) = )
| —yl? " |z —y|P

9

whereas when none of x,y belongs to Supp f, the left member vanishes. The claim (A.3) now
follows.

We now prove (A.6). Note that when x,y are such that |z — y| > L, then

L5 @) = 1)

P (A.4)
<9|fl < Or.
T —ylf >

On the other hand when z,y are distinct points of R? with |x — y| < L, and either some or
none of them belongs to Supp f, we find with (A.5)

1o @ = fwl
o —yp T

and the claim (A.6) now follows. O

The next result will provide an effective control of the Holder-norms (1.28), (1.30), with the
help of the expansion in an orthonormal basis of wavelets. The fact that such bases give rise to
a handy control of the Holder-property is well known, cf. Daubechies [6, p. 199-203], Mallat [16,
p. 169-173]. The proposition we will now prove, gives a version of these results useful for the
calculations of Section 4. We introduce the sequence of non-negative integers .J,,,n > 0, such
that

(A7) 2/ < L, < 27n41
and recall the L?(IR%)-orthogonal expansion in (1.35).

Proposition A.2. (d>1,0<8<1,p,7)

There is a constant I' > 1, depending on d, 3, p,, such that for n > 0, and f compactly
supported bounded measurable function, one has, cf. (1.35) for the notations,

1 n_e Jn
(AS) f ’f’(n) < sup 26(J )’caj,p’ <Tr ’f’(n) .
a,t<Jn,peZ?
a#0, for {<Jy,

Moreover, when A is a bounded linear operator mapping bounded measurable functions on R?
into bounded measurable compactly supported functions on R?, and A vanishes for functions

supported in the complement of some compact subset of R, then

1 20t
(A9  plAl<  sw S S g (e Aoy
o l<Jp,pEZ o W< Jnp €LY
a#0, when £<Jn o/#£0, when ¢/ <J,

<Tf|Alln,

with the notation (h,g) = /h(m)g(z:) dx.
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Proof. We begin with the proof of (A.8). For f as in the statement, a € {0,1}%, £ < J,,, p € zZe,
with « # 0, when ¢ < J,,, the coefficients c‘]” of (A.8), are expressed in view of (1.35), as

(A.10) Catp = 57 / f(a ~p)da,
(note incidentally that for n >0, £ < J,,, a # 0, ca 'p = ci’z ;) Denoting throughout the proof

with ¢ a positive constant changing from place to place and solely depending on d, 3, ¢, 1, we
find that for £ < J,,, p € Z¢, a € {0, 1}d, with o # 0 if £ < J,,:

Note that when o # 0, 6,, = 1, for some 1 < i <d, in (1.33), hence
(A.12) / Oo(x)dr =0, fora #0.

We see that for ¢ < J,,,p € Z%, o # 0:

A.13 c —2_“/ f(z) = f(2%)) 04 £—p dx
(A.13) e smanay (@ ~ 722N 6a (5 =)
and hence

26\ 5 _
(A14) el < e () Wlon < 2 |l

The right inequality in (A.8) now follows from (A.11), (A.14).

Conversely, expanding f as in (1.35), assume that
(A.15)  py def sup {]cagp] 20(n=0). o € {0,134, ¢ < J,,p € Z% a # 0 when £ < Jn} < 00.
Observe that for ¢ < ¢y < J,, and = € ]Rd,

Jn o 0—Jn
| E anta(zop)|<e powen
a,p a,p

0 <<%g 01 <<l

0a (5 )
(A.16)

S Cpf Z ZQ(E_J’”) S Cpf 26(20_Jn) ,
ZlSZSZO

since for each £ < J,, at most ¢ of the summands in the expression after the first inequality do

not vanish. In particular ) B, converges uniformly (and of course in L?) towards
< <e<J n

f, which is continuous and satisfies:

Jn
Ca,t,p

(A17) Floe < 5.
Note that when |z — y| > 277, one has

(A18) 7))~ 1) <2110 < 2¢py < epy [

On the other hand, when |z — y| < 277, so that
(A.19) 2l < |z — y| < 200 with Oy < J,
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we introduce f =)  a» ci"g 0.0, and find
lo<t<Jn P "

_ (A16)

1f(@) = fW) <2|f = floo +1f(2) = fly)| <

oo o 5y ((Gn) (30

ZOSZSJn
_ _ 1 (A19)
(A.20) cpp2Blo=dn) yepe 3 28U=Tn) I2ey‘ <
Lo<t<Jn
—y|B
Ly 0<I< Ty

xz—yl|B Yy (A. T —
eos(| 2|+ le—ylom (=Pt ) TS ey T

Combining (A.17), (A.18), (A.20), the proof of (A.8) is completed.

We now turn to the proof of (A.9). We begin with the proof of the left-hand inequality. We
denote with ® 4 the middle expression of (A.9), which we assume finite. We pick a [0, 1]-valued
function h, compactly supported such that

(A.21) |h|(n) < 3, and
(A.22) A(hg) = A(g) for any bounded measurable g.

Indeed given our assumptions on A, we can for instance pick h of the form (1.37), with u large,
and use (A.6). For g with |g(,) <1, we define

(A.23) f=hg.

so that expanding f as in (1.35) with (J,, in place of jy), and keeping the notation (A.15) for
py, we find:

(A.8) (1.29),(A.21)

Since A(g) = A(f) is bounded measurable and compactly supported, we find:

1.35),(A.10 1
(A.25) Alg) = A(F) IO O AUt
C\{,ZSJn,p
a0, for £<Jy,

We also know that the partial sums f, cf. above (A.20), converge uniformly to f, as £y tends to
—0o0, and only finitely many terms in the sum defining f do not identically vanish on the support
of h. Using the continuity of A for the sup-norm, we find that for o € {0,1}%, ¢ < J,,,p € Z*,

with « # 0, for £ < J,, with hopefully obvious notations:

1
28(n=0) o0d (Ot Af))] < 26(In—)-td > ‘Cizig/,p/(f)‘ ‘<9a,€,p=A(0a’,€’,p’)>‘

! '’ /
o/ \l\p

(A26) (415 N

< Pf /%; ) W W‘<6a,f,paA(0a/,Z’,p’)>‘ .
a’,ehp

Keeping in mind (A.24), we see coming back to (A.25) with the help of (A.8) that A(g) is a
(-Holder continuous function and:

(A.27) |A(g)|(ny < c®a, (cf. above (A.21) for the notation).
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This proves the left inequality of (A.9).

We now prove the right inequality of (A.9). Without loss of generality we assume ||A]|,
finite, i.e. A maps boundedly the set of bounded (-Hélder continuous functions endowed with
| - |(n), into itself. Consider ag € (0,1}, 4y < Jn,po € Z4, with ag # 0, if g < Jp, and J’ a
finite set of (o, ¢, p’) satisfying analogous constraints. Using the convention sign (0) = 1, we
define

(A28) f = ; Sign (<90l()7407170’ A(9a1’5,7p,)>) 25@’ 90{’75/,?/ .

From (A.8), we deduce that

(A.29) | fln) < ¢2%7n and that
(A.8),(A.10) 1
A (n) S ¢ 9B(n—to) S | (a0, 0,00 A(F))]
(A.28) B 28
(ABO) — CQﬁ(Jn ZO) ; 2€0d |<9ao,éo,po7A(ea/,€/7p/)>|
(A.29) N

> C|f|(n) ; PR ‘<9ao7éo,po’A(Qa’l’vp’m'

Since f in (A.28) is not identically zero and «yg, £, pg, and J' are arbitrary, we find that

(A.31) |All, > c®4, (cf. above (A.21) for the notation).
This finishes the proof of (A.9), and of Proposition A.2. O
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