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0 Introduction

The mathematical investigation of transport in disordered media has been an active field of
research over the last thirty years, rich in surprising effects and mathematical challenges.
In a number of cases the method of the environment viewed from the particle has proven
a powerful tool, cf. De Masi et al. [7], Kipnis-Varadhan [12], Kozlov [13], Molchanov
[17], Olla [18], [19], Papanicolaou-Varadhan [21], [22]. However basic models such as
random walk in random environment or Brownian motion perturbed by an environment-
dependent drift, when the random drift is neither the gradient of a stationary function nor
incompressible, have in essence not been amenable to this approach and remain to this
day mathematical challenges. An intensive effort to understand these models has been
launched in the last five years. Progress has been made, especially in the case of ballistic
behavior, i.e. when the particle has a non-degenerate velocity, see for instance [27], [32]
and the references therein. As for diffusive behavior, there has been some progress, cf. [4],
but overall the topic has been little touched. The present work is precisely concerned
with diffusive behavior, and investigates isotropic diffusions in random environment that
are small perturbations of Brownian motion. When the space dimension is three or more,
we prove transience and an invariance principle. The model we analyze is a continuous
counterpart of the model studied by Bricmont-Kupiainen [5]. However our strategy of
proof is different and we believe more transparent.

Let us first describe the setting in more details. The local characteristics, i.e. covari-
ance and drift, of the diffusion in random environment are bounded stationary functions
a(x, ω), b(x, ω), x ∈ lRd, ω ∈ Ω, with respective values in the non-negative d-matrices and
lRd, d ≥ 3; the set Ω is endowed with a group (tx)x∈lRd of jointly measurable transforma-
tions preserving the probability lP on Ω. We assume that for ω ∈ Ω, a(·, ω) is uniformly
elliptic, see (1.5), and that

(0.1) a(·, ω) and b(·, ω) satisfy a Lipschitz condition with constant K, cf. (1.4) .

We denote with Px,ω the law of the diffusion in the environment ω, starting from x, i.e.
the unique probability on C(lR+, lR

d) solution of the martingale problem attached to x
and

(0.2) L =
1

2

d∑
i,j=1

aij(y, ω) ∂2
ij +

d∑
i=1

bi(y, ω) ∂i ,

cf. [26]. We let (Xt)t≥0 stand for the canonical process on C(lR+, lR
d).

The random characteristics of the diffusion are assumed to have finite range depen-
dence, namely for some R > 0, under lP,

σ
(
a(x, ·), b(x, ·), x ∈ A

)
and σ

(
a(y, ·), b(y, ·), y ∈ B

)
are independent

when A,B ⊆ lRd have mutual distance at least R .
(0.3)

Further they also fulfill a restricted isotropy condition, namely for any rotation matrix r
preserving the union of coordinate axes of lRd,

(0.4)
(
a(rx, ω), b(rx, ω)

)
x∈lRd has same law under lP as

(
ra(x, ω)rT , rb(x, ω)

)
x∈lRd ,

we refer to Section 1 for details.
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The main result of this article, cf Theorem 6.3, states that

Theorem. (d ≥ 3)

There is an η0(d,K,R) > 0, such that if

(0.5) |a(x, ω) − I| ≤ η0, |b(x, ω)| ≤ η0, for all x ∈ lRd, ω ∈ Ω ,

then for lP-a.e. ω,

1√
t
X·t under P0,ω converges in law to Brownian motion on

lRd with deterministic variance σ2 > 0, as t→ ∞ ,
(0.6)

and

(0.7) for all x ∈ lRd, Px,ω-a.s., lim
t→∞

|Xt| = ∞ .

In other words for diffusions in random environment that are small perturbations of
Brownian motion and satisfy the restricted isotropy condition (0.4), we prove transience
and diffusive behavior. Our results also apply to questions of homogenization in random
media, cf. Theorem 6.4, and show that

Theorem. (d ≥ 3)

One can choose η0(d,K,R) > 0, so that when (0.5) holds, on a set of full lP-probability,
for any bounded functions f, g on lRd, respectively continuous and Hölder continuous, the
solution of the Cauchy problem:

(0.8)

{
∂t uε = Lε uε + g, in (0,∞) × lRd ,

uε|t=0 = f ,

where for ε > 0,

(0.9) Lε =
1

2

d∑
i,j=1

aij

(
x

ε
, ω

)
∂2

ij +
d∑

i=1

1

ε
bi

(
x

ε
, ω

)
∂i ,

converges uniformly on compact subsets of lR+ × lRd, as ε → 0, to the solution of the
Cauchy problem

(0.10)

{
∂t u0 = σ2 ∆ u0 + g, in (0,∞) × lRd ,

u0|t=0 = f .

When b(·, ω) ≡ 0, cf. [22], [31], or when L is in divergence form, cf. [7], [13], [19],
[20], [21], the method of the environment viewed from the particle applies successfully,
and there is an extensive literature on invariance principles describing diffusive behavior
and applications to homogenization. There is also ample literature on analogous discrete
situations, cf. [2], [3], [12], [13], [14], [15]. On the other hand the case of general diffusions
in random environment of type (0.2) remains poorly understood, reflecting the genuine
non self-adjoint character of the problem and the absence of invariant measure at hand.
We do not know of any work proving diffusive behavior, and in the context of random
walks in random environment only of [4], [5].
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We will now give some description of the proof of our results. The main point appears
in Theorem 1.1. It states an induction step concerning the behavior of the diffusion in
random environment along a sequence of length scales Ln ' L

(1+a)n

0 and time scales L2
n,

where a is a small positive number and L0 in a large enough number, cf. (1.14), (1.15).
Several assumptions are propagated from level n to level n + 1. A first assumption,
cf. (1.47), states that up to a lP-probability decaying like a large negative power of Ln,
the following holds. On the one hand, for starting points x with distance const Ln from
the origin, the displacements of the path of the diffusion in the environment ω slightly
beyond distances of order Ln satisfy under Px,ω a certain exponential control, cf. (1.39),
and on the other hand the transition kernel at time L2

n of the diffusion:

(0.11) Rn(x, dy) = Px,ω[XL2
n
∈ dy]

is in a sense that we explain below “close” to the Gaussian kernel

(0.12)
R0

n(x, dy) = (2παn L
2
n)−d/2 exp

{
− (y − x)2

2αn L2
n

}
dy, with

αn ≈ lEE0,ω

[
|XL2

n
|2

]
/(dL2

n) ,

(cf. (1.22) for the true definition), after localization of x in a box of size const Ln around
the origin. The way in which “close” is defined plays a pivotal role in this work. It refers
to the operator norm ‖ · ‖n, for linear transformations on the space of bounded Hölder
continuous functions of order β (some fixed number in (0, 1

2
], cf. (1.13)), endowed with

the norm | · |(n), cf. (1.28), adapted to functions “living in scale Ln”:

(0.13) |f |(n) = sup
x∈lRd

|f(x)| + sup
x6=y

|f(x) − f(y)|
|x−y

Ln
|β .

In essence “close” means ‖χn,0(Rn − R0
n)‖n ≤ constL−δ

n , where χn,0 is a cut-off function
localizing x in (0.11), (0.12), within distance const Ln of the origin, cf. (1.38), and δ > 0
is a fraction of β, cf. (1.40).

A second assumption being propagated, cf. (1.48), states quantitatively the rarity of
traps by describing the domination of the tails under lP of certain variables measuring
the strength of traps in boxes of size Ln, cf. (1.44), by the corresponding tails of i.i.d.
variables equal to 0 with overwhelming probability. The word “traps” refers to the fact
that in some pockets of the medium, the random drifts b(·, ω) may concur to capture the
particle for a long time.

The third and last assumption entering the induction step, cf. (1.49), controls the
behavior of αn.

Once Theorem 1.1 is proved, we show in Section 6 that when the local characteris-
tics of the diffusion satisfy (0.5), we can start the induction stated in Theorem 1.1. So
the induction assumptions propagate to all levels n, and with Borel-Cantelli’s lemma we
see that all boxes Ln within distance const L2

n+3 of the origin “behave well”. With the
Kantorovich-Rubinstein theorem, cf. [8], the Hölder-norm estimates and the controls on
displacements of the diffusion, cf. (1.47), enable to construct “good couplings” between
the diffusion in random environment and Brownian motion with variance αn, cf. Proposi-
tion 6.2. Since αn converges to a positive limit, namely σ2 of (0.6), the invariance principle
easily follows. The transience of the diffusion, cf. (0.7), and the homogenization result
(0.8), (0.10), also come as easy consequences of these coupling measures.
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Let us explain how the article is organized and briefly comment on each section.
Section 1 presents the setting and states Theorem 1.1. The proof of Theorem 1.1 occupies
Sections 2 to 5 of the article.

Section 2 propagates from level n to level n + 1 the controls on the displacement of
the path, cf. Proposition 2.2.

Section 3 propagates the controls on traps, cf. (1.48) and Proposition 3.3. Traps are
a serious matter in our problem because a pocket of size L has the potential, depending
on the realization of the medium, to entrap the particle for times of exponential order
in L. Hence pockets of relatively modest size may distort the diffusive behavior of the
particle on many time scales L2

n. This feature naturally affects the distribution of the
variables in (1.44) that measure the strength of traps. We are in fact mainly interested in
a small portion of the information contained in (1.48), namely ensuring that the variables
in (1.44) vanish with “overwhelming probability”, cf. (5.2), (5.3). But the inductive proof
requires a control on the tails of the variables in (1.44). To carry the tail domination
control (1.48) from level n to level n + 1, in essence we exhibit exit strategies for the
particle from boxes of size Ln+1 before time L2

n+1, which show that it is costly for the
medium to produce a trap at level n+ 1 of a given strength. Depending on the strength
in question, the exit strategy that is employed varies, and we distinguish four distinct
regimes, (three regimes suffice when d ≥ 4), cf. (3.20).

Sections 4 and 5 are devoted to the propagation from level n to level n + 1 of the
Hölder-norm controls contained in (1.47).

In Section 4, we perform “surgery” in a large box of size const L2
n+1 around the origin,

which contains the relevant portion of the medium for our purpose. We investigate at a
finite depth n−m0−1, with m0 a fixed number, cf. (1.17), this large box, remove all boxes
of size Ln−m0−1 where bad behavior in the sense of (1.47) occurs, and in essence replace
them with good boxes. In this new artificial environment “after surgery”, we analyze the
diffusion at all the levels n′ between n−m0−1 and n+1. We show that with overwhelming
lP-probability this environment not only does not develop in these intermediate levels bad
Hölder-norm behavior with distance L2

n+1 from the origin, but produces a decay of the
relevant ‖ · ‖n′-norms faster than L−δ

n′ , cf. Proposition 4.11. Wavelets, cf. [6], [16], turn
out to provide a powerful tool in the control of the ‖ · ‖n′-norms of certain random linear
operators, cf. Lemma 4.5 and 4.6. Collecting lemmas 4.2 to 4.6, one can read that
the relevant ‖ · ‖n′-norms mentioned above “contract like L

−β/3∧(1−β)∧(d/2−1)
n′ ”, see also

Remark 4.7.

In Section 5, we compare at level n+1 the true environment with the environment after
surgery constructed in Section 4. The difference between them resides in a few defects of
size Ln−m0−1. Thanks to the controls on traps in (1.48), we can assume that these defects
have no trapping power. Then using a strategy close in spirit to Section 2 of [25], we show
that the Hölder regularity of the kernels of the diffusion in the environment after surgery
performed in Section 4, tends to repair the small defects of the true environment, cf.
Proposition 5.1. One can then recover with large lP-probability the bound ‖χn+1,0(Rn+1−
R0

n+1)‖n+1 ≤ constL−δ
n+1, required to prove (1.47) at level n + 1, and the discrepancy

|αn+1 − αn| is controlled in Proposition 5.7.

Section 6 as indicated previously applies Theorem 1.1 to the proof of the main Theorem
6.3, cf. also (0.6), (0.7), and to the derivation of an homogenization result, cf. Theorem
6.4 and (0.8), (0.10).
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The Appendix collects some useful results on the norms | · |(n) on the space of β-Hölder
continuous functions, cf. (0.13), and on the control of the corresponding operator norms
‖ · ‖n with wavelets, cf. Proposition A.2.

The work by Bricmont-Kupiainen [5] was certainly a source of inspiration for the
present work even if we had difficulty to follow some of their arguments. Our proof albeit
using renormalization follows a different track. It may be helpful to highlight some of the
differences beyond the fact that in [5] the setting is discrete and here it is continuous.
In this article we introduce a family of Hölder-norms that play an important role both
for their contraction properties and the couplings they enable to construct. They also
motivate the use of wavelets. Further we directly compare the quenched transition kernels
of the diffusion, cf. (0.11) to certain Gaussian kernels, cf. (0.12), and not to the lP-average
of the kernels in (0.11). This simplifies the proof. Our bounds on traps are conducted
in a different fashion, that is more in line with [29]. We do not carry in our induction a
decomposition of the kernels into “small field” and “large field”. The scales along which
we perform renormalization here grow faster than geometrically, and we perform surgery
at a finite depth, and compare what happens in true and “after surgery” environments.
Our proof also enables to have, unlike [5], a concise induction step stated in Theorem 1.1.
We believe this is a source of clarity.

Finally let us say a few words concerning the decision to work in a continuous rather
than discrete setting. It entails some simplifications because a number of scaling argu-
ments become natural and straightforward. But it also bears some technical intricacies
related to regularity questions at small scales. Decisive was perhaps the fact that some
of the calculations involving wavelets are more transparent and standard when one uses
wavelets on lRd, rather than wavelets on ZZd, cf. [16], §7.3.3.

Acknowledgements: We want to thank Erwin Bolthausen for many helpful conversa-
tions. A.-S. Sznitman also wishes to thank Stéphane Mallat for his explanations concern-
ing wavelets on ZZd.

1 Setting and main induction step

In this section we introduce notations for the main objects of interest and collect some
of their elementary properties. We also present in Theorem 1.1 the induction assumption
that will be propagated. The proof of Theorem 1.1 occupies the next four sections.

We let (ei)1≤i≤d stand for the canonical basis of lRd, and d ≥ 3 throughout the article.
We respectively denote with | · | and | · |∞ the Euclidean and supremum distances on
lRd. We let B(x, r) and B(x, r) stand for the open and closed Euclidean balls with center
x ∈ lRd and radius r > 0, and write B∞(x, r), B∞(x, r) for the corresponding | · |∞-balls.
For A,B subsets of lRd we denote with

(1.1) d(A,B) = inf{|x− y|; x ∈ A, y ∈ B} ,

their mutual | · |-distance, and with d∞(A,B) their analogously defined mutual | · |∞-
distance. When U is a finite subset, we write |U| for the cardinality of U .

The random environment is described by (Ω,A, lP) a probability space endowed with
(tx)x∈lRd a bi-measurable group of lP-preserving transformations. The diffusion matrix and
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the drift of the diffusion in random environment are stationary functions a(x, ω), b(x, ω),
x ∈ lRd, ω ∈ Ω, with respective values in the space M+

d of non-negative d-matrices and
lRd:

(1.2) a(x, ty ω) = a(x + y, ω), b(x, ty ω) = b(x + y, ω), for x, y ∈ lRd, ω ∈ Ω .

We assume that these functions are bounded and uniformly Lipschitz, i.e. there is K > 1,
such that for x, y ∈ lRd, ω ∈ Ω,

|b(x, ω)| + |a(x, ω)| ≤ K ,(1.3)

|b(x, ω) − b(y, ω)|+ |a(x, ω) − a(y, ω)| ≤ K|x− y| .(1.4)

Further we assume that the diffusion matrix is uniformly elliptic, i.e. there is a ν > 1,
such that for x ∈ lRd, ω ∈ Ω:

(1.5)
1

ν
I ≤ a(x, ω) ≤ ν I .

As mentioned in (0.3) the local characteristics of the diffusion satisfy a condition of finite
range dependence. Namely for A ⊆ lRd, we define

(1.6) GA = σ
(
a(x, ·), b(x, ·); x ∈ A

)
,

and assume that for some R > 0,

(1.7) GA and GB are independent under lP whenever d(A,B) ≥ R .

Finally we assume that the local characteristics of the diffusion satisfy the restricted
isotropy condition stated in (0.4).

We recall that (Xt)t≥0 denotes the canonical process on C(lR+, lR
d). We write (Ft)t≥0

and (θt)t≥0 for the respective canonical right-continuous filtration and canonical shift on
C(lR+, lR

d). We also write HB and TU for the respective entrance time of X in the closed
set B ⊆ lRd and exit time of X from the open set U ⊆ lRd:

(1.8) HB = inf{u ≥ 0, Xu ∈ B}, TU = inf{u ≥ 0, Xu /∈ U} .

In view of (1.2) - (1.5), for any ω ∈ Ω, x ∈ lRd, the martingale problem attached to
(a(·, ω), b(·, ω), x), (or alternatively to L in (0.2), and x) is well-posed, cf. [26]. The
corresponding law Px,ω on C(lR+, lR

d), unique solution of the above martingale problem,
describes the diffusion in the environment ω and starting from x. We write Ex,ω for the
expectation under Px,ω. Under Px,ω, (X.) satisfies the stochastic differential equation

(1.9)

{
dXt = σ(Xt, ω) dβt + b(Xt, ω)dt ,

X0 = x, Px,ω-a.s. ,

where σ(·, ω) = a(·, ω)
1
2 and β. is some d-dimensional (Ft)-Brownian motion under Px,ω.

The laws Px,ω are sometimes called “quenched laws” of the diffusion in random envi-
ronment. We also need the “annealed laws”, Px, x ∈ lRd, that are the semi-direct products
on Ω × C(lR+, lR

d):

(1.10) Px = lP × Px,ω .
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We denote with Ex the corresponding expectations. These laws typically destroy the
Markovian property of (X.) but restore translation invariance and isotropy:

the law of (X. + y) under Px equals that of (X.) under Px+y, for x, y ∈ lRd ,(1.11)

and for r a rotation matrix preserving the union of coordinate axes of lRd, and x ∈ lRd,

the law of (rX.) under Px equals that of (X.) under Prx .(1.12)

We now turn to the description of spatial scales. We first choose

(1.13) β ∈
(
0,

1

2

]
,

that will later appear as an exponent of Hölder-continuous functions, as well as

(1.14) a ∈
(
0,

β

1000d

]
, and c0 > 1, with 2 c0 log

(
1 +

a

2

)
> 1 .

Then for L0 ≥ 10a−1
, an integer multiple of 5, we define Ln, n ≥ 0, by induction via:

(1.15) Ln+1 = `n Ln with `n = 5[La
n/5], n ≥ 0 ,

and by convention we set L−1 = 1. We also need the auxiliary scales

(1.16) Dn = Ln exp{c0(log logLn)2}, D̃n = Ln exp{2c0(log logLn)2}, n ≥ 0 .

The proof of Theorem 1.1, when deriving controls on certain Hölder-norms at scale Ln+1,
requires one to work at depth m0 +2 in scale Ln−m0−1, see Sections 4 and 5, with m0 ≥ 2
determined by

(1.17) (1 + a)m0−2 ≤ 100 < (1 + a)m0−1 .

We can now introduce the probability kernels that enter the renormalization scheme. To
this end we first define

(1.18) X∗
u = sup

s≤u
|Xs −X0|, u ≥ 0 ,

as well as the (Ft)-stopping times describing the first time X. travels a distance D̃n from
its starting point:

(1.19) Tn = inf{u ≥ 0, X∗
u ≥ D̃n}, n ≥ 0 .

We can then consider n ≥ 0, ω ∈ Ω, the probability kernels on lRd

(1.20) Rn(x, dy) = Px,ω[XL2
n
∈ dy], R̃n(x, dy) = Px,ω[XL2

n∧Tn
∈ dy] .

In the renormalization scheme we compare Rn and R̃n to a Gaussian probability kernel
R0

n that we now define. To this end we denote with Wx the d-dimensional Wiener measure
starting from x ∈ lRd. Then for n ≥ 0, we set

(1.21) R0
n(x, dy) = Wx

[
Xαn L2

n
∈ dy], R̃0

n(x, dy) = Wx[X(αnL2
n)∧Tn ∈ dy] ,
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where the positive constant αn is such that:

(1.22) E0[|XL2
n∧Tn |2] = EW0 [|XαnL2

n
|2] = αn dL

2
n, n ≥ 0 .

To compare Rn and R̃n to R0
n, we will use the kernels

(1.23) Sn = Rn −R0
n, S̃n = R̃n −R0

n, n ≥ 0, ω ∈ Ω .

The local drift and the compensated second moments at level n at site x in the environment
ω are defined via:

d̃n(x, ω) =
∫

(y − x) R̃n(x, dy) =
∫

(y − x) S̃n(x, dy) ,

γ̃i,j
n (x, ω) =

∫
(y − x)i (y − x)j S̃n(x, dy), 1 ≤ i, j ≤ d .

(1.24)

In view of the translation invariance and isotropy of X. under the annealed measure, cf.
(1.11), (1.12), and of (1.22), we see that

(1.25) lE[d̃n(x, ω)] = 0, lE[γ̃n(x, ω)] = 0, for n ≥ 0, x ∈ lRd .

Note also that for x ∈ lRd, n ≥ 0,

(1.26) S̃n(x, dy) depends in a GB(x, eDn)-fashion on ω ,

(see (1.6) for the notation), and in particular

(1.27) d̃n(x, ω), γ̃n(x, ω) are GB(x, eDn)-measurable .

The finite range dependence property (1.7), together with stationarity and (1.25) yields

the fact that
(
d̃n(x, ω), γ̃n(x, ω)

)
x∈V are i.i.d. centered variables under lP, whenever V is

a collection of points of lRd with mutual distance at least 2D̃n +R. This will be especially
useful in Section 4.

In what follows we will use various norms. For p ∈ [1,∞], we denote with |f |p the
Lp-norm of a measurable scalar function f on lRd. We also consider as already mentioned
in (0.13) the Hölder-norm of order β, cf. (1.13), in scale Ln:

(1.28) |f |(n) = sup
x∈lRd

|f(x)| + Lβ
n sup

x6=y

|f(x) − f(y)|
|x− y|β , n ≥ 0 .

Note that for f, g scalar functions on lRd:

(1.29) |fg|(n) ≤ |f |(n) |g|(n), n ≥ 0 .

The operator norm corresponding to | · |(n) is denoted with ‖ · ‖n:

(1.30) ‖A‖n = sup
|f |(n)=1

|Af |(n) ,

for A a linear operator mapping the space of Hölder-continuous functions of order β into
itself.
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In Section 4 we need to compute in an efficient way the ‖·‖n+1-norm of certain operators
entering the linearization of Sn+1 expressed in terms of n, for n0 −m0 − 1 ≤ n ≤ n0, cf.
Theorem 1.1 for the notation. This is done with the help of wavelets. Namely we choose a
scaling function ϕ and a mother wavelet ψ, which are compactly supported on lR, of class
C4, cf. Daubechies [6, Chapters 5,6], Mallat [16, Chapter 7]. In particular ϕ, ψ have unit
L2-norms and

∫
lR
ψ(t)dt = 0, cf. [6, p. 153], (intuitively one can think of the Haar wavelets

ϕ(t) = 1[0,1)(t), ψ(t) = 1[0, 1
2
)(t) − 1[ 1

2
,1)(t), which of course do not fulfill the smoothness

assumption we require). Attached to this choice we have a multiresolution approximation
of L2(lR), namely a decreasing sequence of closed subspaces Vj, j ∈ ZZ, of L2(lR):

(1.31) · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . ,

with dyadic scaling sending one space into the next, V−∞ = L2(lR), V∞ = {0}, and
ϕ(· − k), k ∈ ZZ, an orthonormal basis of V0, ψ(· − k), k ∈ ZZ, an orthonormal basis of the
complement of V0 in V−1. Since we are interested in functions on lRd, we write

(1.32) θ0 = ϕ, θ1 = ψ ,

and for α ∈ {0, 1}d and x = (x1, . . . , xd) ∈ lRd, we define:

(1.33) θα(x) = θα1(x1) . . . θαd
(xd) ,

as well as for ` ∈ ZZ, p ∈ ZZd:

(1.34) θα,`,p(x) = θα

(
x

2`
− p

)
.

In this way given any “top scale” 2j0, we have an orthogonal basis of L2(lRd) made of
θα,`,p, ` ≤ j0, p ∈ ZZd, with α 6= 0 if ` < j0, and any f ∈ L2(lRd) can be expanded as

(1.35) f(x) =
∑

`≤j0,p∈ZZd

α6=0, for `<j0

cj0α,`,p θα

(
x

2`
− p

)
.

For our purpose the interest of this expansion stems from the fact that with an adequate
choice of j0 (i.e. 2j0 ≈ Ln) the norm |f |(n) is comparable to sup{|cj0α,`,p|2β(j0−`); ` ≤ j0,

p ∈ ZZd, α 6= 0 for ` < j0}. This leads to effective estimates on ‖ · ‖n, cf. Proposition A.2
from the Appendix. These controls will be very useful in the proof of Lemmas 4.5 and
4.6.

To formulate the Hölder-norm controls that enters the induction assumption of The-
orem 1.1 we need certain cut-off functions which we now describe. We consider the
[0, 1]-valued radial function:

(1.36) χ(x) = 1 ∧ (2 − |x|)+, x ∈ lRd ,

so that χ = 1 on B(0, 1), χ = 0 on B(0, 2)c. For u ≥ 1, x ∈ lRd, n ≥ 0, we also consider

χu(·) = χ
( ·
u

)
, as well as(1.37)

χn,x(·) = χ10
√

d Ln
(· − x) = χ

( · − x

10
√
dLn

)
.(1.38)
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Of special importance for us will be the control of the norm ‖χn,x S̃n‖n to measure the

closeness of R̃n to R0
n, for starting points in a neighborhood of size const Ln of x, (we

incidentally mention that ‖χn,x S̃n‖n is finite, cf. Remark 2.6.2)).

We are now ready to describe the induction assumption we will propagate. Part of
the induction assumption, cf. (1.47), expresses the fact that with “high probability”,

‖χn,0 S̃n‖n is “small” and for starting points |y| ≤ 30
√
dLn, the tail of X∗

L2
n

under Py,ω

has exponential decay. More precisely we introduce for ω ∈ Ω, n ≥ 0, the set

Bn(ω) = {x ∈ Ln ZZd; for |y − x| ≤ 30
√
dLn, Py,ω[X∗

L2
n
≥ v] ≤ e−

v
Dn ,

for v ≥ Dn, and ‖χn,x S̃n‖n ≤ L−δ
n } ,

(1.39)

with δ a number slightly larger than β
8
, specifically:

(1.40) δ =
5

32
β .

We will in particular propagate an upper bound on lP[0 /∈ Bn(ω)], cf. (1.47).

Another part of the induction assumption involves the control of traps in the medium.
For n ≥ 0, x ∈ Ln ZZd, we write

(1.41) Cn(x) = x + Ln[0, 1]d, C ′
n(x) = x+ Ln

(
− 1

4
,
5

4

)d

.

fig1.eps
130 × 44 mm

Ln

5
3Ln

2Ln

C ′
n(x)

x

Cn,γ(x)

Cn(x)

Fig. 1: The boxes Cn(x), C ′
n(x), Cn,γ(x)

We then chop each of the 2d faces of ∂Cn(x) into 5(d−1) closed (d− 1)-dimensional cubes
of side-length Ln/5, see (1.15), and denote with Cn,γ(x), 1 ≤ γ ≤ 2d 5(d−1), the resulting
closed d-dimensional cubes obtained by “expanding” in the outwards normal direction to
∂Cn(x) the above mentioned (d − 1)-dimensional cubes, (with some specific labelling of
the collection of cubes expressed by the index γ). We clearly have

(1.42) Cn,γ(x) ⊆ C ′
n(x), for 1 ≤ γ ≤ 2d 5(d−1), n ≥ 0, x ∈ Ln ZZd .

To measure the possible presence of traps in Cn(x), we want to control how well the
diffusion starting in the smaller box Cn(x) travels to the boundary boxes Cn,γ(x) without
leaving the larger box C ′

n(x), within time L2
n. To this end we pick a number

(1.43) ζ ∈ (0, 2), with ζ−1 ≥ 1

2
+ d 3d+1 ,
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see also (3.85), and introduce for n ≥ 0, x ∈ Ln ZZd, A ⊆ Cn(x), 1 ≤ γ ≤ 2d 5(d−1), the
random variables measuring the presence and strength of traps:

(1.44) Jn,x,A,γ(ω) = inf
{
u ≥ 0; inf

y∈A
Py,ω

[
HCn,γ(x) ≤ L2

n ∧ TC′
n(x)] ≥ c1 L

−ζu
n

}
,

where c1 ∈ (0, 1) is the constant depending on d and ν, see also above (3.67):

c1 =
1

4
inf

{
Wx

[
Xu ∈ B, u < T(− 9

40
, 49
40

)d

]
; u ∈

[
1

40ν
,
4ν

10

]
, x ∈

[
− 1

10
,

11

10

]d

,

and B is a closed cube with side-length 1
10

, contained in
[
− 1

5
,
6

5

]d}
> 0 .

We call n-admissible family, for n ≥ 0, an arbitrary collection

(1.45)

(ux, Ax, γx)x∈A, where A is a finite subset of Ln ZZd, and for x ∈ A,
ux > 0, γx ∈ {1, . . . , 2d 5(d−1)}, and Ax ⊆ Cn(x) is a union of boxes
Cn−1(z) (with the convention L−1 = 1, when n = 0, cf. below (1.15)),
such that d∞(Ax, Ax′) ≥ 10dLn−1, when x 6= x′ .

In the induction step we will propagate an upper bound on lP[ for x ∈ A, Jn,x,Ax,γx ≥ ux]
for n-admissible families that will show that with overwhelming probability the variables
in (1.44) vanish. We are now almost ready to state the main Theorem 1.1. We just
need to introduce two numbers M0 and M that will respectively govern the estimates on
lP[0 /∈ Bn(ω)] and on the tail of the variables in (1.44).

(1.46) M0 ≥ 100d(1 + a)m0+2, M ≥ 1000M0 .

Throughout this article we denote with c a positive constant varying from place to place
that solely depends on d,K, ν, R, β, a, c0, ϕ, ψ, ζ,M0,M , cf. (1.3), (1.4), (1.5), (1.13), (1.7),
(1.14), (1.32), (1.43), (1.46). Any additional dependence of the constant will appear in the
notation. So for instance if µ is a parameter, c(µ) denotes a positive constant depending
solely on µ, d,K, ν, R, β, a, c0, ϕ, ψ, ζ,M0,M .

Theorem 1.1. (main induction step)

There are positive constants c2, c, such that for L0 ≥ c, for n0 ≥ m0 + 1, (cf. (1.17)),
if for all 0 ≤ n ≤ n0,

(1.47) lP[0 /∈ Bn(ω)] ≤ L−M0
n ,

and for all n-admissible families (ux, Ax, γx)x∈A,

(1.48)
lP[ for all x ∈ A, Jn,x,Ax,γx ≥ ux] ≤ L

−Mn
P

x∈A(ux+1)
n , with

Mn = M
∏

0≤j<n

(
1 − c2

logLj

)
,

and if, with δ as in (1.40),

i)
1

2ν
≤ αn ≤ 2ν, 0 ≤ n ≤ n0 ,(1.49)

ii) |αn+1 − αn| ≤ L
−(1+ 9

10
)δ

n , 0 ≤ n < n0 ,

then the estimates (1.47), (1.48) hold with n0 + 1 in place of n0, and

(1.50) |αn0+1 − αn0 | ≤ L
−(1+ 9

10
)δ

n0 .
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The proof of Theorem 1.1 is the scope of the next four sections. The crucial control
is (1.47). In Section 2 we propagate the localization estimate contained in (1.47), that
pertains to the tail behavior of X∗

L2
n
. In Section 3 we propagate the control on traps that

appears in (1.48). It is in fact used in a rather special case, at the beginning of Section 5,
cf. (5.3). As mentioned in the Introduction, the more detailed (1.48) enables the induction
proof to function. In Section 4 we perform surgery on the environment at scale Ln′

0
, with

n′
0 = n0 − m0 − 1, and remove possible defects within distance const L2

n0+1 from the

origin, which (in essence) belong to Ln′
0
ZZd\Bn′

0
(ω), and show that with high probability

this modified environment behaves very well up to scale Ln0+1. In Section 5 we compare
the true and modified environment, and show with the help of the smoothness estimates
of Section 4, and the control on traps from (1.48) and Section 3, that one can repair the
defects possibly present in the true environment.

We have already discussed our convention concerning positive constants above Theo-
rem 1.1. We will use in the sequel the expression “for large L0” in place of “when L0 ≥ c”.
We will recurrently use the shorthand notation

(1.51) κn = exp{c (log logLn)2}, n ≥ 0 .

From now on we assume L0 ≥ 10, large enough so that

(1.52) Ln < Dn < D̃n < Ln+1, for n ≥ 0 .

We close this section with some bounds on the Brownian semigroup and on the semigroup
of diffusion in random environment. We write (Pt)t≥0 for the Brownian semigroup and
pt(x, y) for its transition density so that

pt(x, y) = (2πt)−
d
2 exp

{
− |y − x|2

2t

}
, t > 0, x, y ∈ lRd, and(1.53)

Ptf(x) =
∫
pt(x, y) f(y)dy, t > 0 ,(1.54)

= f(x), t = 0, with x ∈ lRd, f bounded measurable .

Note that Pt, t ≥ 0, contracts the | · |(n)-norm and

(1.55) ‖Pt‖n = 1, for t ≥ 0 .

Also for γ = (γ1, . . . , γd) a multi-index (i.e. γi ≥ 0, integer), f bounded measurable,
x ∈ lRd, t > 0, one has

(1.56) |Dγ(Ptf)(x)| ≤ c(γ)

t
|γ|
2

exp
{
− d(x, Supp f)2

4t

}[( |f |1
t

d
2

)
∧ |f |∞

]
,

with |γ| = γ1 + · · · + γd, (the estimate readily follows from the identity: Dγ
x pt(x, y) =

(−1)|γ| t−
d+|γ|

2 Dγq
(

y−x√
t

)
, with q(z) = 1√

2π
e−

|z|2

2

)
.

The semigroup of the diffusion in the environment ω

(1.57) (Pt,ωf)(x) = Ex,ω[f(Xt)], t ≥ 0, x ∈ lRd, f as in (1.54) ,
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thanks to (1.3) - (1.5), is known to admit a density pt,ω(x, y), cf. Friedman [9], p. 24,
which satisfies for 0 < t ≤ 1, x, y ∈ lRd:

pt,ω(x, y) ≤ c

t
d
2

exp
{
− c |y − x|2

t

}
,(1.58)

|Dx pt,ω(x, y)| ≤ c

t
d+1
2

exp
{
− c |y − x|2

t

}
.(1.59)

As a consequence we can bound the norm ‖Pt‖L∞→(n) of Pt between L∞(lRd) and the
space of β-Hölder-continuous functions endowed with the norm | · |(n).

Lemma 1.2.

(1.60) ‖Pt,ω‖L∞→(n) ≤ c Lβ
n, for t ≥ 1, n ≥ 0, ω ∈ Ω .

Proof. First note that for s ≥ 0, ω ∈ Ω,

(1.61) |Ps,ωf |∞ ≤ |f |∞ .

Then with (1.59) and the above we see that

|P1,ω f(x) − P1,ω f(y)| ≤ c(|x− y| ∧ 1) |f |∞ ≤ c Lβ
n

(∣∣∣x− y

Ln

∣∣∣
β

∧ 1
)
|f |∞ .(1.62)

We thus find

(1.63) |P1,ω f |(n) ≤ c Lβ
n |f |∞ ,

and writing for t ≥ 1, Pt,ω = P1,ω Pt−1,ω, the claim (1.60) now follows from (1.61), (1.63).

2 Localization estimates

We keep the notations of the previous section and in particular of Theorem 1.1. We
begin here the proof of Theorem 1.1, the principal aim of this section is to propagate to
level n0 + 1 the tail estimates on X∗ implicit in (1.47), see also (1.39). This is achieved
in Proposition 2.5. We also derive controls in Proposition 2.5 which in particular imply
that Sn0+1 and S̃n0+1 are typically close in ‖ ‖n0+1-norm. We begin with some additional
notations. With K from (1.3), (1.4), and n ≥ 0, we define:

(2.1) Tn = (−2K L2
n, 2K L2

n)d ,

and also introduce for ω ∈ Ω, the modification of Bn(ω) in (1.39), see (1.16) for notations:

B̃n(ω) =
{
x ∈ Ln ZZd; for |y − x| ≤ 30

√
dLn, Py,ω

[
X∗

L2
n
≥ v] ≤ exp

{
− v

Dn

}
,(2.2)

for Dn ≤ v ≤ D̃n, and ‖χn,x S̃n‖n ≤ L−δ
n

}
.

Note that for n ≥ 0, x ∈ Ln ZZd, the event {x ∈ B̃n(ω)} unlike {x ∈ Bn(ω)} has a local
dependence:

(2.3) {x ∈ B̃n(ω)} ∈ GB(x, eDn+30
√

d Ln), (see (1.6) for the notation) .

In the terminology introduced above (1.51), and the notations of (1.22), (1.24), one has
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Lemma 2.1. There is a constant c > 0, such that for large L0, for any ω ∈ Ω, n ≥ 0,
with αn ≤ 2ν, x ∈ Ln ZZd with ‖χn,xS̃n‖n ≤ L−δ

n , and |y − x| ≤ 10
√
dLn:

(2.4) |d̃n(y, ω)| ≤ κn L
1−δ
n , |γ̃n(y, ω)| ≤ κn L

2−δ
n , with κn = exp{c(log logLn)2} .

Proof. For y as above and 1 ≤ i, j ≤ d, we define, cf. (1.37),

fi(z) = χ eDn
(z − y)

(z − y)i

Ln
, and(2.5)

fi,j(z) = fi(z) fj(z) .(2.6)

Observe that

(2.7) |fi|(n) ≤ κn and |fi,j|(n)

(1.29)

≤ κn .

Further using that fi(z) = ( z−y
Ln

)i for |z − y| ≤ D̃n, and Gaussian estimates, see (1.53),
(here the control on αn comes in play), one finds that

(2.8)
∣∣∣ d̃n(y, ω)i

Ln
− (S̃n fi)(y)

∣∣∣ ≤ e−κn ,
∣∣∣ γ̃

i,j
n (y, ω)

L2
n

− (S̃n fi,j)(y)
∣∣∣ ≤ e−κn .

Since χn,x(y) = 1, cf. (1.38), and ‖χn,x S̃n‖n ≤ L−δ
n , cf. (2.2), the claim now follows (L0

is large).

We now turn to the localization estimates.

Proposition 2.2. For large L0, if for n ≥ 0, (1.47) and 1
2ν

≤ αn ≤ 2ν hold, then

lP
[
for |y| ≤ 30

√
dLn+1, Py,ω[X∗

L2
n+1

≥ v] ≤ exp
{
− v

Dn+1

}
, for v ≥ Dn+1

]

≥ 1 − 1

10
L−M0

n+1 .
(2.9)

Proof. Using the exponential inequality for martingales, cf. Revuz-Yor [23], p. 145, for
large L0, n ≥ 0, ω ∈ Ω, v ≥ 2K L2

n+1, and arbitrary y we find

(2.10) Py,ω

[
X∗

L2
n+1

≥ v
]
≤ c exp

{
− c v2

L2
n+1

}
≤ c exp{−cv} ≤ exp

{
− v

Dn+1

}
.

Hence for proving (2.9) we can restrict v to

(2.11) Dn+1 ≤ v < 2K L2
n+1 .

For such v and ω ∈ Ω, we define

Bn,v(ω) =
{
x ∈ Ln ZZd, Py,ω[X∗

L2
n
≥ u] ≤ exp

{
− u

Dn

}
, for Dn ≤ u ≤ v

100
,(2.12)

and |d̃n(y, ω)| ≤ κn L
1−δ
n , for |y − x| ≤ 10

√
dLn

}
,

where κn appears in (2.4). As in (2.3) the local dependence of the event {x ∈ Bn,v(ω)},
for x ∈ Ln ZZd, is expressed by

(2.13) {x ∈ Bn,v(ω)} ∈ GB(x,( v
100

∨ eDn)+10
√

d Ln) .
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In particular with (1.7) and (2.11), we see that when L0 is large,

for x, x′ ∈ Ln ZZd, with |x− x′| ≥ v
40
, {x ∈ Bn,v(ω)} and

{x′ ∈ Bn,v(ω)} are independent .
(2.14)

We then introduce, see (2.1):

(2.15) Ωn,v =
{
ω ∈ Ω, Tn+1 ∩ Ln ZZd ∩ Bc

n,v(ω) ⊂ B
(
x0,

v

70

)
, for some x0 ∈ Ln ZZd

}
.

Observe that when L0 is large, n ≥ 0, v as in (2.11),

lP[Ωc
n,v] ≤ lP

[
Tn+1 ∩ Ln ZZd ∩ Bc

n,v(ω) has diameter ≥ 2v

70
−

√
dLn

]
≤

lP
[
for some x, x′ ∈ Tn+1 ∩ Ln ZZd, with |x− x′| ≥ v

40
, x and x′ /∈ Bn,v(ω)] ≤

(c L2
n+1/Ln)2d L−2M0

n ≤ L4d
n+1 L

−2M0
n ,

(2.16)

where we have used Bn(ω) ⊂ B̃n(ω), and hence with (2.2), (2.4), Bn(ω) ⊂ Bn,v(ω), as well
as (1.47) and (2.14) in the last step. We now pick some ω ∈ Ωn,v. We can find some
x0(ω) ∈ Tn+1 ∩ Ln ZZd, such that

(2.17) Tn+1 ∩ Ln ZZd ∩ Bc
n,v(ω) ⊆ B

(
x0(ω),

v

70

)
.

We introduce the successive entrance times Ri and exit times Di of X. in B(x0,
v
50

) and
out of B(x0,

v
40

), (see (1.8) for the notation):

R1 = HB(x0, v
50

), D1 = TB(x0, v
40

) ◦ θR1 +R1, and for i ≥ 1 ,

Ri+1 = R1 ◦ θDi
+Di, Di+1 = D1 ◦ θDi

+Di ,
(2.18)

so that

(2.19) R1 ≤ D1 ≤ R2 ≤ · · · ≤ ∞ .

We first discuss the more complicated case where

(2.20) |x0(ω)| ≤ v

2
.

Then for |y| ≤ 30
√
dLn+1, we write for large L0,

(2.21) Py,ω[X∗
L2

n+1
≥ v] ≤ Py,ω[X∗

L2
n+1

≥ v, R1 ≤ L2
n+1] + Py,ω[TB(0, 3

4
v) < R1 ∧ L2

n+1] ,

where we have used that Py,ω-a.s., TB(0, 3
4

v) < L2
n+1, on {X∗

L2
n+1

≥ v}. To bound the first

term on the right-hand side of (2.21), we consider on the event {X∗
L2

n+1
≥ v, R1 ≤ L2

n+1}
the last exit time of B(x0,

v
40

) before TB(0, 3
4

v) (< L2
n+1, Py,ω-a.s. on this event), and the

integer part of this time. We then find:

Py,ω[X∗
L2

n+1
≥ v, R1 ≤ L2

n+1] ≤

Py,ω

[
for some k ≤ L2

n+1, sup
u∈[k,k+1]

|Xu −Xk| ≥ v

100

]
+

Py,ω

[ ⋃
m≤L2

n+1

(
{Xm ∈ K(x0)} ∩ θ−1

m

{
TB(0, 3

4
v) < R1 ∧ L2

n+1

})]
, with

m integer and K(x0) = ∂B
(
x0,

v

40

)
+B

(
0,

v

100

)
.

(2.22)
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Using an exponential inequality as in (2.10) to bound the first term on the right-hand
side of (2.22), we find:

Py,ω

[
X∗

L2
n+1

≥ v, R1 ≤ L2
n+1

]
≤

c L2
n+1

(
exp{−cv2} + sup

z∈K(x0)

Pz,ω

[
TB(0, 3

4
v) < R1 ∧ L2

n+1

])
.(2.23)

For convenience we write Kn = {k ≥ 0; kL2
n < R1 ∧ L2

n+1 ∧ TTn+1}. Keeping in mind the

last term of (2.21), we write for |z| ≤ 30
√
dLn+1, or z ∈ K(x0):

(2.24)
Pz,ω

[
TB(0, 3

4
v) < R1 ∧ L2

n+1

]
≤

Pz,ω

[
for some k ∈ Kn, supu∈[kL2

n,(k+1)L2
n] |Xu −XkL2

n
| ≥ v

100

]
+

Pz,ω

[
for each k ∈ Kn, supu∈[kL2

n,(k+1)L2
n] |Xu −XkL2

n
| < v

100
, and

TB(0, 3
4

v) < R1 ∧ L2
n+1 ∧ TTn+1

] (2.12),(2.17)

≤
c `2n exp

{
− v

100Dn

}
+ Pz,ω

[
for each k ∈ Kn, supu∈[kL2

n,(k+1)L2
n] |Xu −XkL2

n
| < v

100
,

and X∗
R1∧L2

n+1∧TTn+1
>

v

5

]
≤

c `2n exp
{
− v

100Dn

}
+ Pz,ω

[
for each k ∈ Kn, supu∈[kL2

n,(k+1)L2
n] |Xu −XkL2

n
| < v

100
,

and for some m ∈ Kn, |XmL2
n
− z| > v

10

]
.

We now have to bound the last term of (2.24). To this end we will use an exponential
estimate. But we first need the following

Lemma 2.3. If Z is a random variable on some probability space such that

E[eZ ] ≤ 2, E[e−Z ] ≤ 2 and(2.25)

E[Z] = 0 ,(2.26)

then for L ≥ 1,

(2.27) E
[
exp

{√
log 2

2

Z

L

}]
≤ 21/L2

.

Proof. For α ∈ (0, 1] and u ∈ lR, one has the inequality

(2.28) α−2(eαu − 1 − αu) ≤ eu + e−u − 2 ,

that can be verified by expanding both sides in Taylor series and using that
∑

k≥2,even
uk

k!
≥∑

k≥2,odd
uk

k!
. Hence we find

(2.29) eαZ ≤ 1 + αZ + α2[eZ + e−Z − 2] .

Substituting α =
√

log 2
2
L−1, and taking expectations we find with (2.25), (2.26), that the

left-hand side of (2.27) is smaller than

1 +
log 2

L2
≤ exp

{
log 2

L2

}
≤ 21/L2

.

This proves (2.27).
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The desired exponential estimate comes in the next lemma where y ′ plays the role of
XmL2

n
in the last term of (2.24). For u ≥ 0, we write

(2.30) ψu(·) = [−u ∨ ·] ∧ u .

Lemma 2.4. There is a constant c such that for L0 large, if x ∈ Bn,v(ω) and |y′ − x| ≤
10
√
dLn, then for any e ∈ ZZd, with |e| = 1,

(2.31) Ey′,ω

[
exp

{
c

`nDn

[
ψ v

100

(
(XL2

n
− y′) · e

)
− Ey′,ω

[
ψ v

100

(
(XL2

n
− y′) · e

)]]}]
≤ 2`−2

n .

Proof. In view of Lemma 2.3, we only need to prove that for some c and all e as above:

(2.32) Ey′,ω

[
exp

{
c

Dn

[
ψ v

100

(
(XL2

n
− y′) · e

)
− Ey′,ω

[
ψ v

100

(
(XL2

n
− y′) · e

)]]}]
≤ 2 .

To this end note that with a small enough c one has

(2.33)

Ey′,ω

[
exp

{
c

Dn
ψ v

100

(
(XL2

n
− y′) · e

)}]
≤ 1 + Ey′,ω

[(
XL2

n
− y′) · e > 0 ,

∫ v
100

∧(X
L2

n
−y′)·e

0

c

Dn
exp

{ c

Dn
u
}
du

] (2.12)

≤ 1 +

∫ v
100

0

c

Dn
exp

{
(c− 1)

u

Dn
+ 1

}
du

≤ 1 +
c

1 − c
e ≤

√
2 .

Then observe that when L0 is large:

(2.34)

∣∣Ey′,ω

[
ψ v

100

(
(XL2

n
− y′) · e

)]
− d̃n(y′, ω) · e

∣∣ (1.24)
=

∣∣Ey′,ω

[
ψ v

100

(
(XL2

n
− y′) · e

)
− (XL2

n∧Tn
− y′) · e

]∣∣

and since the integrand vanishes when Tn > L2
n, (because v

100
> D̃n),

≤ 2v

100
Py′,ω[Tn ≤ L2

n]
(2.11),(2.12)

≤ c L2
n+1 exp

{
− D̃n

Dn

}

(1.15),(1.16)

≤ c exp{2(1 + a) logLn − exp{c0(log logLn)2}} .

Moreover with (2.12) we find:

(2.35) |d̃n(y′, ω) · e| ≤ κn L
1−δ
n .

Hence where L0 is large, combining (2.33) - (2.35), we obtain (2.32). This concludes the
proof of Lemma 2.4.

With the same c as in (2.31), introducing for e ∈ ZZd, with |e| = 1, and m ≥ 0, the
notation

Ee,m =(2.36)

exp
{

c

`nDn

∑
0≤j<m

(
ψ v

100

(
(X(j+1)L2

n
−XjL2

n
) · e

)
− EX

jL2
n

,ω[ψ v
100

(
(XL2

n
−X0) · e

)])}
,
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we see as an application of (2.31) and the Markov property that for m < `2n, |z| ≤
30
√
dLn+1 or z ∈ K(x0), e as above:

(2.37) Ez,ω[mL2
n < R1 ∧ TTn+1 , Ee,m] ≤ 2 .

Note also that for large L0, for 0 ≤ m < `2n, Pz,ω-a.s. on the event {|Xm L2
n
− z| > v

10
,

mL2
n < R1 ∧ TTn+1 , and for 0 ≤ k < m, supu∈[kL2

n,(k+1)L2
n] |Xu −XkL2

n
| < v

100
}, for some e

as above, with (2.12) and (2.34), (2.35):

Ee,m ≥ exp
{

c

`nDn

∑
0≤j<m

[
(X(j+1)L2

n
−XjL2

n
) · e− 2κn L

1−δ
n

]}

≥ exp
{

c

`nDn

(
v

10d
− κn `

2
n L

1−δ
n

)}
≥ exp

{
c

`nDn
v
}
,

using (1.14), (1.40) and v ≥ Dn+1, in view of (2.11), in the last step. It now follows
from (2.37) that the last term of (2.24) is smaller than 2`2n exp{− c

`nDn
v}. Hence we

see that when L0 is large the left-hand side of (2.24) is smaller than c`2n(exp{− v
100Dn

} +
exp{− c

`n Dn
v}).

Using this bound in (2.23) and on the last term of (2.21), (recall that |z| ≤ 30
√
dLn+1

or z ∈ K(x0(ω)) in (2.24)), we obtain for large L0 and |y| ≤ 30
√
dLn+1:

Py,ω[X∗
L2

n+1
≥ v] ≤ c L2

n+1

(
exp{−cv2} + `2n exp

{
− v

100Dn

}
+ `2n exp

{
− cv

`nDn

})

≤ exp
{
− 10v

Dn+1

}
,(2.38)

where we have used in the last step that for large L0

(2.39)
Dn+1

`nDn

(1.15),(1.16)

≥ exp{c0
[(

log logLn + log
(
1 +

a

2

))2 − (log logLn)2
]}

≥ exp{2c0 log
(
1 +

a

2

)
log logLn

}
,

with 2c0 log(1 + a
2
) > 1, by (1.14), as well as v ≥ Dn+1, in view of (2.11).

We now turn to the simpler case where unlike (2.20)

(2.40) |x0(ω)| > v

2
.

Then for |y| ≤ 30
√
dLn+1, L0 being large, we write:

(2.41) Py,ω[X∗
L2

n+1
≥ v] ≤ Py,ω[TB(0, v

3
) < R1 ∧ L2

n+1] ≤ exp
{
− 10v

Dn+1

}
,

repeating similar bounds as in (2.24), (leading to (2.38)). We now define, cf. (2.15),

(2.42) Ωn =
⋂

m≥0;10m Dn+1<2KL2
n+1

Ωn,10mDn+1 ,

and observe that for ω ∈ Ωn, v ∈ [Dn+1, 2KL
2
n+1), |y| ≤ 30

√
dLn+1,

(2.43) Py,ω[X∗
L2

n+1
≥ v] ≤ Py,ω[X∗

L2
n+1

≥ vm]
(2.38),(2.41)

≤ exp
{
− 10vm

Dn+1

}
≤ exp

{
− v

Dn+1

}
,
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with the notation 10mDn+1 = vm ≤ v < 10vm.

In addition from (2.16) we deduce that when L0 is large

(2.44) lP[Ωc
n] ≤

([
log

(
2KL2

n+1

Dn+1

)
/ log 10

]
+ 1

)
c L4d

n+1 L
−2M0
n ≤ 1

10
L−M0

n+1 ,

since 2M0(1 + a)−1 > M0 + 4d+ 1, by (1.14), (1.46). Combining (2.10), (2.43), (2.44), we
see that (2.9) is proved.

We will now conclude this section with an estimate on ‖χn,x(Sn − S̃n)‖n that will be
repeatedly used in the sequel. We refer to (1.23), (1.30), (1.38) for the notations.

Proposition 2.5. Given κ0
n as in (1.51), for L0 large, for any n ≥ 0, ω ∈ Ω, if x ∈ Ln ZZd

is such that for |y − x| ≤ 30
√
dLn,

Py,ω

[
X∗

L2
n
≥ D̃n

2

]
≤ e−κ0

n,(2.45)

then there exists a κn as in (1.51) such that

‖χn,x(Sn − S̃n)‖n ≤ e−κn .(2.46)

Proof. We use the shorthand notation

∆n = Sn − S̃n, so that(2.47)

∆n g(z)
(1.23)
= Ez,ω

[
g(XL2

n
) − g(XL2

n∧Tn
), Tn < L2

n

]
.

Note that for f with |f |(n) ≤ 1, and x, y as above (2.45),

(2.48) |∆n f(y)| ≤ 2Py,ω[Tn < L2
n]

(2.45)

≤ 2e−κ0
n .

So when L0 is large, we find that for y, y′ in B(x, 21
√
dLn), with |y − y′| ≥ e−κn,

(2.49) |∆n f(y) − ∆n f(y′)| ≤ 2e−κ0
n ≤ Lβ

n

∣∣∣y − y′

Ln

∣∣∣
β

e−κn ≤
∣∣∣y − y′

Ln

∣∣∣ e−κn ,

(see above (1.51) for the convention we use, and we are only interested in y, y ′ ∈ B(x, 21
√
dLn)

because χn,x is supported in B(x, 20
√
dLn), as follows from (1.38)).

We now consider for κn as above (2.49),

(2.50) |y − y′| ≤ e−κn ,

and write

(2.51)

|∆n f(y)− ∆n f(y′)| ≤ a1 + a2, with

a1 = |Ey′,ω[f(XL2
n∧Ty′

) − f(XL2
n∧Ty

)]| ,
a2 = |Ey,ω[f(XL2

n
) − f(XL2

n∧Ty)] − Ey′,ω[f(XL2
n
) − f(XL2

n∧Ty)]| ,
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and Ty = TB(y, eDn), Ty′ = TB(y′ , eDn) in the notations of (1.8). Writing

(2.52) τ = Ty ∧ Ty′ ,

it follows from the strong Markov property at time τ , with hopefully obvious notations,
that

a1 ≤
∣∣Ey′,ω

[
Ty′ = τ < L2

n ∧ Ty, EXT
y′

,ω[f(XTy∧(L2
n−τ)) − f(X0)]

]∣∣ +
∣∣Ey′,ω

[
Ty = τ < L2

n ∧ Ty′, EXTy ,ω[f(XTy′∧(L2
n−τ)) − f(X0)]

]∣∣
def
= b1 + b2, (the inner expectations do not integrate τ) .

(2.53)

We will now bound b1, b2 being handled similarly. To this end we consider z′ ∈ ∂B(y′, D̃n)∩
B(y, D̃n), (z′ plays the role of XTy′

), 0 ≤ u ≤ (L2
n − τ)+, and H the half-space {z ∈

lRd; z · ` ≥ v}, with ` the unit vector in the direction z′ − y′, v = z′ · ` + |y′ − y|. So

d(H, B(y′, D̃n)) = |y − y′| in the notation (1.1), and B(y,Dn) ⊂ Hc. We will use the
shorthand notation, cf. (1.8), H = HH, and note that

Ez′,ω[|XTy∧u −X0|β ∧ 2] ≤
2Pz′,ω[H > |y′ − y|] + Ez′,ω[H ≤ |y′ − y|, |XTy∧u −X0|β ∧ 2] .

(2.54)

To bound the right-hand side of (2.54), we first note that under Pz′,ω, (Xs−X0) · ` admits
the semimartingale decomposition

(2.55) (Xs −X0) · ` = Ms + As, s ≥ 0 ,

where in view of (1.3) - (1.5), for some c > 1,

(2.56)
1

c
s ≤ 〈M〉s ≤ cs, |As| ≤ cs, s ≥ 0 .

Observe also that with c as above,

(2.57) Pz′,ω-a.s., Ty ≤ H ≤ H̃
def
= inf{s ≥ 0,Ms ≥ cs+ |y′ − y|} .

As a result we find that

Pz′,ω[H ≤ |y′ − y|] ≥ Pz′,ω[H̃ ≤ |y′ − y|] ≥ Pz′,ω

[
sup

s≤|y′−y|
Ms ≥ (c+ 1)|y′ − y|

]

≥ W
[

sup
s≤c|y−y′|

Bs ≥ (c+ 1)
] scaling

= W
[
sup
s≤1

Bs ≥ c|y − y′| 12
]

= 1 −
∫ c|y′−y| 12

−c|y′−y| 12
e−

v2

2
dv√
vπ

≥ 1 − c |y′ − y| 12 ,

(2.58)

where B. denotes the canonical one-dimensional Brownian motion, W the Wiener mea-
sure, and we have used time-change together with (2.56). This yields a bound on the
first term in the right-hand side of (2.54). For the second term we note that with c as in
(2.56), we can define

(2.59) H = inf{s ≥ 0, Ms = (c+ 1)|y′ − y|} ,
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and Pz′,ω-a.s. on the event {H ≤ |y′ − y|}, one has Ty ≤ H ≤ H, and hence

Ez′,ω

[
H ≤ |y′ − y|, |XTy∧u −X0|β ∧ 2]

(1.9)

≤(2.60)

c|y′ − y|β + Ez′,ω

[
H ≤ |y′ − y|, sup

s≤H

∣∣∣
∫ s

0

σ(Xv, ω) dβv

∣∣∣
β ]

≤

c |y′ − y|β + cEz′,ω[H
β
2 ] ≤ c |y′ − y|β ,

using Burkholder-Davis-Inequalities, cf. Karatzas-Shreve [11, p. 166], then once again a
representation of M. as a time change of Brownian motion together with scaling, and the
fact that moments of order less than 1

2
of the hitting time of 1 by Brownian motion are

finite, cf. [11, p. 96]. We can now collect (2.58), (2.60) to bound the left-hand side of
(2.54). Coming back to the first line of (2.53), since |f |(n) ≤ 1, and β ≤ 1

2
, cf. (1.13), we

find (recall τ is not integrated in the inner expectation)

b1 ≤ Ey′,ω

[
Ty′ = τ < L2

n ∧ Ty, EXT
y′

,ω

[
|XTy∧(L2

n−τ) −X0|β ∧ 2
]]

≤ c |y − y′|β Py′,ω[τ = Ty′ < L2
n]

(2.45)

≤ c |y − y′|β e−κ0
n ≤

∣∣∣y − y′

Ln

∣∣∣
β

e−κn .
(2.61)

A similar bound can be proved for b2.

We then turn to the bound on a2 in (2.51). We use the shorthand notation

(2.62) t0 = (log |y′ − y|)−2, (recall (2.50)) ,

and denote with qt,ω(z, z′) the sub-probability density of the diffusion in the environment
ω, killed when exiting the ball B(y, 10), at time t > 0, when starting in z ∈ B(y, 10). We
now find that

1−
∫
qt0 ,ω(y, z) ∧ qt0,ω(y′, z) dz ≤ 1 −

∫
qt0,ω(y, z) dz +

∫
|qt0,ω(y, z) − qt0,ω(y′, z)| dz ≤ 1 −

∫
qt0,ω(y, z) dz +

∫
|pt0,ω(y, z) − pt0,ω(y′, z)| dz + 1 −

∫
qt0,ω(y, z) dz +

1−
∫
qt0 ,ω(y′, z) dz ≤ c e

− c
t0 + c

∣∣∣y − y′√
t0

∣∣∣
(2.62)

≤ c
∣∣∣y − y′√

t0

∣∣∣ ,

(2.63)

for large L0, using (1.59) and standard estimates.

With the help of (2.63), we can construct on some auxiliary probability space two
processes Y. and Y ′

. with same laws as X. under Py,ω and Py′,ω such that

P [G] ≥ 1 − c
∣∣∣y − y′√

t0

∣∣∣, with

G =
{
Yu = Y ′

u for u ≥ t0, and Y and Y ′ do not exit B(y, 10) up to time t0
}
.

(2.64)

We now see that with a slight abuse of notations, when L0 is large:

a2 ≤
∣∣E

[
Gc, f(YL2

n
) − f(YL2

n∧T
B(y, eDn)

(Y )) − (f(Y ′
L2

n
) − f(Y ′

L2
n∧T

B(y, eDn)
(Y ′)))

]∣∣

≤ 4P
[
Gc, TB(y, eDn)(Y ) < L2

n or TB(y, eDn)(Y
′) < L2

n

]

Hölder, (2.45)

≤ P [Gc]
1+β

2 e−κn
(2.62),(2.64)

≤ |y − y′|β e−κn ≤
∣∣∣y

′ − y

Ln

∣∣∣
β

e−κn .

(2.65)
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Collecting the bounds (2.51), (2.53), (2.61), (2.65), together with (2.49), we see that when
L0 is large, for y, y′ in B(x, 21

√
dLn),

(2.66) |∆n f(y) − ∆nf(y′)| ≤
∣∣∣y − y′

Ln

∣∣∣
β

e−κn .

This together with (2.48) and (1.38) readily implies (2.46), (see also (A.4) - (A.6) of the
Appendix).

Remark 2.6.

1) We have used the assumption β ≤ 1
2
, cf. (1.12), in the estimate (2.58).

2) Note that the estimates on (2.51), and (1.60) can also be used to show that for
ω ∈ Ω, n ≥ 0, x ∈ Ln ZZd,

(2.67) ‖χn,x S̃n‖n ≤ c Lβ
n .

�

3 Controlling traps

We continue the proof of Theorem 1.1. The main objective in this section is to propagate
“at level n0 + 1” the estimate (1.48), and this comes in Proposition 3.3. As mentioned
in the Introduction and in Section I below Theorem 1.1, the main purpose of the control
(1.48) on the tails of the variables in (1.44) measuring the strength of traps, is to later
obtain the estimate (5.3), when “repairing defects”. This only involves a small portion of
(1.48), but (1.48) is there to let the induction proof function. As a preparation for our
main task we first construct certain couplings of the diffusion in random environment with
Brownian motion of variance αn, cf. (1.22), at times kL2

n, k ≥ 0. These couplings will be
very handy later in this section as well as in Section 6. We begin with some notations.
We denote with dn,β(·, ·) the distance function on lRd:

(3.1) dn,β(y, y
′) =

∣∣∣y − y′

Ln

∣∣∣
β

, y, y′ ∈ lRd, n ≥ 0 .

We define for ν, ν ′ probabilities on lRd, for which

(3.2)
∫
|y|β ν(dy) <∞,

∫
|y|β ν ′(dy) <∞ ,

Dn,β(ν, ν ′) = sup
{∣∣

∫
fdν −

∫
fdν ′

∣∣ ; where f on lRd is such that

|f(y)− f(y′)| ≤ dn,β(y, y′), for y, y′ ∈ lRd
}

= inf
{∫

lRd×lRd
dn,β(y, y

′) ρ(dy, dy′); with ρ probability

having ν, ν ′ as first and second marginals
}
,

(3.3)

where the last equality results from the Kantorovich-Rubinstein Theorem, cf. Dudley
[8, Theorem 20.1]. The function Dn,β is sometimes called Kantorovich-Rubinstein or
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Vasserstein distance. We now consider a continuous function h with values in [0, 1], and
for ω ∈ Ω, n ≥ 0, define the probability kernel on lRd

(3.4) R̃n,h(x, dy) = R0
n(x, dy) + h(x) S̃n(x, dy), cf. (1.21), (1.23),

(so when h ≡ 0, R̃n,h = R0
n, and when h ≡ 1, R̃n,h = R̃n).

We are now ready to state and prove the above mentioned result concerning coupling
measures.

Proposition 3.1. Let h be a continuous [0, 1]-valued function on lRd, ω ∈ Ω, and n ≥ 0
such that 1

2ν
≤ αn ≤ 2ν. Then for y ∈ lRd, there is a measure Qn,y on the canonical space

(lRd × lRd)lN endowed with the canonical σ-algebra and the canonical processes X k, k ≥ 0,

X
0

k, k ≥ 0, such that

(3.5)
under Qn,y, Xk, k ≥ 0, (resp. X

0

k, k ≥ 0) has the law of the Markov

chain on lRd, starting at y with transition kernel R̃n,h (resp. R0
n)

and for k0 ≥ 1, γ > 0,

(3.6) Qn,y

[
|Xk −X

0

k| ≥ γ, for some k ≤ k0

]
≤ k2

0

(
γ

Ln

)−β

(κn Γn,h + e−κn) ,

with Γn,h = supx∈LnZZd:χn,xh≡/ 0 ‖χn,x S̃n‖n.

Remark 3.2. Note that under Qn,y above, (X
0

k)k≥0 has same law as (XαnkL2
n
)k≥0 under

Wy, the Wiener measure starting from y, cf. above (1.21). The inequality (3.6) highlights
one of the interests in controlling the norms ‖ · ‖n. �

Proof of Proposition 3.1: For z ∈ lRd, denote with Kz the non-empty compact subset of
M1(lR

d × lRd), the set of probability measures on lRd × lRd, endowed with the topology of
weak convergence

Kz =
{
ρ ∈M1(lR

d × lRd); ρ has marginals Rn,h(z, ·) and R0
n(z, ·),

and Dn,β(R̃n,h(z, ·), R0
n(z, ·)) =

∫
dn,β(z1, z2) ρ(dz1, dz2)

}
.

(3.7)

Observe that for any sequences zi, ρi, i ≥ 1, with ρi ∈ Kzi
, for i ≥ 1, and zi converging to

z∞, ρi is tight and has a limit point ρ∞ such that:

∫
dn,β(z1, z2) ρ∞(dz1, dz2) ≤ lim inf

i
Dn,β

(
R̃n,h(zi, ·), R0

n(zi, ·)
)

= Dn,β

(
R̃n,h(z∞, ·), R0

n(z∞, ·)
)
,

(3.8)

as follows straightforwardly by applying the triangle inequality satisfied by Dn,β, as well
as (2.67) and (3.3). This shows that ρ∞ ∈ Kz∞. Then with Stroock-Varadhan [26, Lemma
12.1.8 and Theorem 12.1.10, p. 289], we can find a probability kernel ρ̃z(dz1, dz2), z ∈ lRd,
such that

(3.9) for z ∈ lRd, ρ̃z(·) ∈ Kz ,
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and define the transition probability ρz,z0
(dz′, dz′0) on lRd × lRd:

(3.10)
∫
g(z′, z′0) ρz,z0

(dz′, dz′0) =
∫
g(z1, z2 − z + z0) ρ̃z(dz1, dz2) ,

for g bounded measurable on lRd × lRd, and z, z0 ∈ lRd.

We then define Qn,y as the canonical law of the Markov chain with transition kernel ρ
and initial distribution concentrated on (y, y). With (3.7), (3.9), it is straightforward to
check that (3.5) holds. To prove (3.6), observe that for k ≥ 1:

(3.11)

EQn,y [dn,β(Xk, X
0

k)] ≤ EQn,y [dn,β(Xk−1, X
0

k−1)]+

EQn,y [dn,β(Xk, X
0

k −X
0

k−1 +Xk−1)]
(3.9),(3.10)

=

EQn,y [dn,β(Xk−1, X
0

k−1)] + EQn,y [Dn,β(R̃n,h(Xk−1, ·), R0
n(Xk−1, ·))]

To bound the rightmost term, note that for z ∈ lRd, when x ∈ LnZZd is such that |z−x| ≤√
dLn, and f has Lipschitz constant at most 1 with respect to dn,β(·, ·), one finds

(3.12) |R̃n,h f(z) − R0
n f(z)| (3.4)

= h(z)|S̃n f(z)| = h(z) |S̃n (f(·) − f(x))(z)|

and since R̃n(z, ·) is supported in B(z, D̃n) with (1.23), (1.37)

≤h(z)| S̃n F (z)| + h(z)| S̃n[(1 − χ2
√

d eDn
(· − x)) (f(·) − f(x))](z)|

≤h(z) |(χn,x S̃n F )(z)| + h(z)R0
n

[
1B(x,2

√
d eDn)c(·)

∣∣∣ · − x

Ln

∣∣∣
β]

(z) ,

with F (·) = χ2
√

d eDn
(· − x)(f(·) − f(x)). Note that

(3.13) |F |(n) ≤ κn ,

and we now see that the left-hand side of (3.12) is smaller than

h(z)
(
κn‖χn,x S̃n‖n +W0[XαnL2

n
/∈ B(0, 2

√
d D̃n)]

1
2 EW0

[∣∣∣XαnL2
n

Ln

∣∣∣
2β] 1

2
)
≤ κn Γn,h + e−κn .

With (3.3), we see that we have shown that

(3.14) sup
z∈lRd

Dn,β(R̃n,h(z, ·), R0
n(z, ·)) ≤ κn Γn,h + e−κn .

Coming back to (3.11), using induction over k, and the fact that X0 = X0, Qn,y-a.s., we
find for k ≥ 0,

(3.15) EQn,y [dn,β(Xk, X
0

k)] ≤ k(κn Γn,h + e−κn) .

The application of Chebyshev’s inequality now yields for γ > 0, k0 ≥ 1:

(
γ

Ln

)β

Qn,y

[
|Xk−X0

k| ≥ γ, for some k ≤ k0

]
≤

k0∑
k=1

k(κn Γn,h+e
−κn) ≤ k2

0(κn Γn,h+e
−κn) ,

which proves (3.6). �
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We can now return to the main object of this section, namely propagating (1.48) “at
level n0 + 1”. The idea is to devise exit strategies from Cn0+1(x) for the path, that show
that it is costly for the environment to produce Jn0+1,x,·,· variables above level ux, for x in
a finite collection A. The nature of the exit strategies depends on the level ux, and there
are four regimes, (only three when d ≥ 4), cf. (3.20). The higher the ux, the more the
exit strategy relies on the control (1.48) at level n0. The lower the ux, the more the exit
strategy relies on “good-behavior” of the environment around C ′

n0+1(x) at the micro-level
n0 − 1, in the sense of (2.2), so that good couplings with Brownian motion resulting from
Proposition 3.1 can be employed. Good behavior is precisely expressed by the events Cx,
cf. (3.24), (3.32), and below (3.33). As one of the first steps, we reduce ourselves to a
situation of “only good behavior”, cf. (3.36). This involves a certain thinning procedure of
A singling out local high values of ux and showing that bad behavior of the environment at
these sites is costly, cf. (3.36). We then have to control the probability that the variables
Jn0+1,x,·,· are bigger than ux, for x in a thinning of A, in the presence of good-behavior
of the environment, cf. Lemma 3.4. This is done with the help of the exit strategies that
enable to bound the variables, Jn0+1,x,·,· from above, in terms of Jn0,·,·,· variables, cf. (3.50),
(3.58), (3.71), (3.76), and then use the induction assumption, cf. (3.78). The constant
ζ, cf. (1.43), (1.44), is important in the treatment of the lower values of ux, cf. (3.85).
We then go back from the estimates on the thinned collection with good-behavior of the
environment to the general upper bound in (3.86).

Proposition 3.3. One can choose a (large enough) positive constant c2 in (1.48), such
that for large L0 and n0 ≥ m0 + 1, if (1.49) holds for n0 and (1.47), (1.48) hold for
0 ≤ n ≤ n0, then (1.48) holds for n0 + 1.

Proof. We consider (ux, Ax, γx)x∈A, with A a finite subset of Ln0+1 ZZd, an (n0 + 1)-
admissible family, cf. (1.45). From the definition (1.44), we see that

Jn,x,A∪B,γ = Jn,x,A,γ ∨ Jn,x,B,γ, for n ≥ 0, x ∈ LnZZd, A, B ⊂ Cn(x),

1 ≤ γ ≤ 2d 5d−1 .
(3.16)

As a result we see that

(3.17)
lP

[
∀x ∈ A, Jn0+1,x,Ax,γx ≥ ux

]
≤

(c`dn0−1 `
d
n0

)|A| s̃up lP
[
∀x ∈ A, Jn0+1,x,Cn0−1(zx),γx ≥ ux

]

where s̃up stands for the supremum over families zx ∈ Ln0−1 ZZd, x ∈ A, with Cn0−1(zx) ⊆
Cn0+1(x), and d∞(Cn0−1(zx), Cn0−1(zx′)) ≥ 10dLn0, for x 6= x′, in A.

We will now work on the rightmost term of (3.17). To this end we introduce a thinning

Ã of A as follows. We pick some x1 ∈ A such that ux1 = maxx ux, and define N1 = {x ∈
A, |x−x1|∞ ≤ Ln0+1, and (ux +1) logLn0 < (ux1 +1)}, where we recall that | · |∞ denotes
the sup-norm on lRd. So N1 corresponds to the boxes Cn0+1(x), x ∈ A, adjacent to
Cn0+1(x1), with value (ux + 1) smaller than (ux1 + 1)/ logLn0 . We define

A1 = A\(N1 ∪ {x1}) .
Either A1 = ∅, in which case the process stops, or A1 6= ∅, and we repeat the same
procedure to A1, and define x2, N2 as above, and set A2 = A1\(N2 ∪ {x1}), and so on.
After p steps, with p ≤ |A|, one has Ap = ∅, and the process stops. We then write

(3.18) Ã = {x1, . . . , xp} = A \ ⋃
1≤i≤p

Ni ,
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and observe that

(3.19)

x, x′ ∈ Ã and |x− x′|∞ ≤ Ln0+1 implies (logLn0)
−1 ≤ ux′ + 1

ux + 1
≤ logLn0 , and

∑
x∈A

(ux + 1) ≤
(
1 +

3d

logLn0

) ∑
x∈ eA

(ux + 1) .

We introduce the notation ad = 3
4

(d− 2)a, and partition Ã into four subsets:

(3.20)
Ã1 = {x ∈ Ã; ux ≥ La

n0
}, Ã2 = {x ∈ Ã; Lad

n0
≤ ux < La

n0
}

Ã3 = {x ∈ Ã; logLn0 ≤ ux < Lad∧a
n0

}, Ã4 = {x ∈ Ã; 0 < ux < logLn0} .

Note that Ã2 = ∅, whenever d ≥ 4.

Our aim is to produce an upper bound on quantities of the type lP[ ∀x ∈ Ã,
Jn0+1,x,Cn0−1(zx),γz ≥ ux]. We will in essence show that {Jn0+1,x,Cn0−1(zx),γx ≥ ux} is unlikely
by producing an exit strategy for the process that leads before time L2

n0+1∧TC′
n0+1(x) from

y ∈ Cn0−1(zx) ⊆ Cn0+1(x) to the box Cn0+1,γx(x) with side-length Ln0+1/5 that borders

∂Cn0+1(x), cf. below (1.41). The nature of this strategy depends on which Ãi, 1 ≤ i ≤ 4,

x belongs to. In particular when x ∈ Ã2, or x ∈ Ã3∪Ã4, the exit strategy involves certain
events describing a “good behavior” of the environment “at level n0−1”. We first specify
these events.

We introduce for x ∈ Ã2, (recall this only concerns the case of dimension d = 3), the
numbers αx, νx, ν

′
x such that:

(3.21)
ux = Lαx

n0
,

(
so that by (3.20), αx ∈

[
3
4
a, a

))
, and

0 < νx
def
=

1

2

(
a− αx

2

)
< ν ′x

def
=

5

8
αx +

a

4
<

7

8
a .

We will now define for x ∈ Ã2 the event Cx which in essence specifies the presence in

Cn0+1(x) of channels of width L1+νx
n0

within distance ∼ L
1+ν′

x
n0 of any point of Cn0+1(x)

where the process easily travels. More precisely call a box B = z + [0, L1+νx
n0

]d, z ∈
L1+νx

n0
ZZd, of side-length L1+νx

n0
, n0-good for ω, if all y ∈ Ln0−1 ZZd within | · |-distance

30
√
dLn0−1 of B belong to B̃n0−1(ω), cf. (2.2). Then set

C0
n0+1(x) = {z ∈ Cn0+1(x); d(z, Cn0+1(x)

c) > L1+ν′
x

n0
} ,

and for e ∈ ZZd, |e| = 1 ,

Ce
n0+1(x) = (C0

n0+1(x) + 2eL1+ν′
x

n0
)\Cn0+1(x) .

(3.22)

We now define for z ∈ C0
n0+1(x), z

′ ∈ Ce
n0+1(x), (e as above), and s > 0:

Cz,z′,s
x = {ω ∈ Ω; there is a nearest-neighbor path of n0-good boxes

B1 = z1 + [0, L1+νx
n0

], . . . , Bk = zk + [0, L1+νx
n0

], k ≤ 4La−νx
n0

,

moving in the e-direction after the first i ∈ [1, k], for which

d∞(zi, Cn0+1(x)
c) ≤ 1

2
L

1+ν′
x

n0 , with d∞(z, B1) ∨ d∞(z′, Bk) ≤ sL
1+ν′

x
n0

}
,

(3.23)

as well as the event

(3.24) Cx =
⋂
z,z′

Cz,z′,1
x , where z runs over C0

n0+1(x), z
′ over

⋃
|e|=1

Ce
n0+1(x),
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(note that requiring z, z′ to have rational coordinates does not change (3.24), and makes
clear that Cx is an event). We now bound lP[Cc

x]. We observe that

(3.25) lP[Cc
x] ≤ c L2d(a−νx)

n0
sup
z,z′

lP
[
(Cz,z′, 1

2
x )c

]
, L0 large,

where z, z′ respectively run over (L1+νx
n0

ZZd)∩C0
n0+1(x), and

⋃
|e|=1(L

1+νx
n0

ZZd) ∩Ce
n0+1(x).

We now set w = L
−(1+νx)
n0 (z′− z) ∈ ZZd, and for convenience assume that z′ ∈ Ce3

n0+1(x)
and wi ≥ 0, 1 ≤ i ≤ d(= 3); the other cases being handled in a similar fashion. For
θ = (θ1, θ2) ∈ 2ZZ2, with θ1, θ2 ≤ 0, we define kθ = w1 + w2 + w3 + |θ1| + |θ2|, and for
0 ≤ i < kθ,

(3.26) pθ
0 = (0, θ1, θ2), p

θ
i+1 − pθ

i =





(1, 0, 0), 0 ≤ i < w1 + |θ1|
(0, 1, 0), w1 + |θ1| ≤ i < w1 + w2 + |θ1| + |θ2|
(0, 0, 1), w1 + w2 + |θ1| + |θ2| ≤ i < kθ ,

as well as
zθ

i+1 = z + L1+νx
n0

pθ
i , B

θ
i+1 = zθ

i+1 + [0, L1+νx
n0

]d .

Note that for θ 6= θ′,

(3.27) d∞(Bθ
i , B

θ′

i′ ) ≥ L1+νx
n0

, 1 ≤ i ≤ kθ, 1 ≤ i′ ≤ kθ′ ,

and for |θ1|, |θ2| ≤ 1
100

L
ν′

x−νx
n0 , L0 large,

(3.28)





kθ ≤ (3Ln0+1 + L
1+ν′

x
n0 )L

−(1+νx)
n0 +

2

100
L

ν′
x−νx

n0

(3.21)

≤ 4La−νx
n0

,

d∞(z, Bθ
1) ∨ d∞(z′, Bθ

kθ
) <

1

2
L

1+ν′
x

n0 , and for

1 ≤ i < kθ, d∞(zθ
i , Cn0+1(x)

c) ≤ 1

2
L

1+ν′
x

n0 , implies zθ
i+1 − zθ

i = L1+νx
n0

e3 .

fig2.eps
77 × 61 mm

Ln0+1

x

2L1+νx
n0

Ln0+1

5

Fig. 2: Candidates for paths of good boxes corresponding to the exit strategy for Ã2.

Solid lines are made of boxes of side-length L1+νx
n0

and distance between paths

of boxes are at least L1+νx
n0
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So the paths Bθ
i , 1 ≤ i ≤ kθ, satisfy the requirements set forth in the definition of Cz,z′, 1

2
x .

Then for any such given path Bθ
i , 1 ≤ i ≤ kθ,

(3.29) lP[one of the Bθ
i is not n0-good] ≤

(
cL1+νx

n0

Ln0−1

)d

4La−νx
n0

L−M0
n0−1 ≤

1

2
,

when L0 is large, cf. (1.14), (1.46), (1.47), (3.21).

Then using independence, cf. (1.7), (2.3), (3.27), we see that

lP
[
(Cz,z′, 1

2
x )c

]
≤

(
1

2

)(cL
ν′x−νx
n0

)2

,

and using (3.25), we find when L0 is large, for x ∈ Ã2,

lP[Cc
x] ≤ cL2d(a−νx)

n0
exp

{
− cL2(ν′

x−νx)
n0

} (3.21)

≤ exp
{
− c L

a
16

+αx
n0

}
<

L
−6d 9dM(ux+1) log Ln0
n0−1 .

(3.30)

When x ∈ Ã3 ∪ Ã4, (we are back in the case of a general d ≥ 3), the event Cx will in
place of (3.24) require that there are “few” boxes Cn0−1(z) ⊆ C ′

n0+1(x), cf. (1.41), with

z /∈ B̃n0−1(ω). Just as in (3.24), the good behavior of the environment is specified at level

n0 − 1. More precisely for z ∈ Ã3 ∪ Ã4 and ω ∈ Ω, we introduce the compact sets

(3.31) Kx,ω =
⋃
z

B(z, 30
√
dLn0−1) ⊃ K̃x,ω =

⋃
z

B(z, 29
√
dLn0−1) ,

where the unions run over the set of z ∈ Ln0−1 ZZd, with d(z, C ′
n0+1(x)) ≤ 30

√
dLn0−1,

such that z /∈ B̃n0−1(ω). We then define for x ∈ Ã3 ∪ Ã4,

Cx =
{
ω ∈ Ω; Kx,ω is contained in the union of Nx open balls

with radius 4D̃n0−1 and centers in Ln0−1 ZZd
}
,

(3.32)

with Nx = [12d 9d(1 + a)2 M
M0

(ux + 1) logLn0 ] + 1.

For x ∈ Ã3 ∪ Ã4, on Cc
x, arguing by contradiction we can find Nx disjoint open balls

with radius 3
2
D̃n0−1, and centers in Ln0−1 ZZd ∩ (x+Ln0+1[−1

2
, 3

2
]d)∩B̃c

n0−1(ω). As a result

with (1.7), (1.47), (2.3), we find that for large L0, for x ∈ Ã3 ∪ Ã4:

lP[Cc
x] ≤ (c(`n0−1 `n0)

d L−M0
n0−1)

Nx ≤ (cL
da(2+a)−M0

n0−1 )Nx

(1.46)

≤ L
−M0Nx/2
n0−1 ≤ L

−6d 9d M(ux+1)(log Ln0 )
n0+1 .

(3.33)

For convenience, we set Cx = Ω, for x ∈ Ã1. We now come back to the rightmost term of
(3.17), and observe that

(3.34)

lP[∀x ∈ A, Jn0+1,x,Cn0−1(zx),γx ≥ ux] ≤
2|A| sup

G⊆ eA\ eA1

lP
[
for x ∈ Ã, Jn0+1,x,Cn0−1(zx),γx ≥ ux, Cx for x ∈ G,
Cc

x for x ∈ Ã\(Ã1 ∪ G)
]
.
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For G as above we chose M = M(G) a maximal set of non-adjacent x in Ã\(Ã1∪G), (i.e.

with mutual | · |∞-distance at least Ln0+1), and denote by M the set of x ∈ Ã adjacent
to M. Coming back to the definitions of the events Cx in (3.24), and the definition of
the variables Jn0+1,x,A,γ, with A ⊆ Cn0+1(x), cf. (1.44), we see with the help of (1.7) that
when L0 is large the collection of events

(3.35) Cc
x, x ∈ M,

{
∀x ∈ Ã\M, Jn0+1,x,Cn0−1(zx),γx ≥ ux, Cx

}
are independent .

This fact together with (3.30), (3.33), yields that for large L0

lP[∀x ∈ A, Jn0+1,x,Cn0−1(zx),γx ≥ ux] ≤
(3.36)

2|A| sup
G⊆ eA\ eA1

{
L
−6d9dM

P
x∈M(ux+1)(log Ln0 )

n0+1 lP
[
∀x ∈ Ã\M, Jn0+1,x,Cn0−1(zx),γx ≥ ux, and Cx

]}
.

With the help of (3.19) we also have a lower bound on the exponent in the first term in
the right-hand side of (3.36), that we will later use in (3.86):

(3.37) 6d 9d M
∑

x∈M
(ux + 1) logLn0 ≥ 6d 3dM

∑
x∈M

(ux + 1) .

We will now bound the last term in the right-hand side of (3.36):

(3.38) I
def
= lP

[
∀x ∈ D, Jn0+1,x,Cn0−1(zx),γx ≥ ux, and Cx

]
, with D = Ã\M .

Our main control comes in the next

Lemma 3.4. For any positive number c2 there are c′, c(c2) > 0, (see above Theorem
1.1 for the convention concerning constants, and c2 is not yet a constant), such that for
L0 ≥ c(c2),

∏
n≥0(1 − c2(logLn)−1) ≥ 1

2
, and with the notation (1.48),

(3.39) I ≤ L
−P

x∈ eA\M
Mn0 (1−c′(log Ln0 )−1)(ux+1)

n0+1 L
−Mn0 d3d+1 a| eA4\M|
n0 .

Proof. We define for 1 ≤ i ≤ 4, in the notations of (3.20), (3.38),

(3.40) Di = D ∩ Ãi .

The proof involves the construction of “exit strategies” for the process somewhat in the
spirit of what was done in [29]. The nature of these exit strategies from Cn0+1(x), leading
to Cn0+1,γx(x) before time L2

n0+1∧TC′
n0+1(x), when starting in Cn0−1(zx), depends on which

Di, 1 ≤ i ≤ 4, x belongs to.

The exit strategy first uses an “exit path” based on a sequence of nearest-neighbor
boxes (of size Ln0), Cn0(yj,x), 0 ≤ j ≤ jx, starting at Cn0(y0,x), containing or close to
Cn0−1(zx), leading to a final location, the nature of which depends on which Di, 1 ≤ i ≤ 4,
x belongs to.

More precisely we consider a family πx, x ∈ D, of finite sequences πx = (yj,x, γj,x)0≤j≤jx

in Ln0 ZZd × {1, . . . , 2d 5(d−1)}, so that writing for simplicity (0 ≤ j ≤ jx):

Cj,x = Cn0(yj,x), ∆j,x = Cn0,γj,x
(yj,x)

∆−1,x = Cn0−1(zx), for x ∈ D\D4, ∆−1,x = Cn0(y0,x), for x ∈ D4 ,
(3.41)
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we have:

(3.42)





Cn0−1(zx) ⊆ C0,x, Cj,x ⊆ Cn0+1(x), 0 ≤ j ≤ jx, and

∆j,x ⊆ Cj+1,x, 0 ≤ j < jx, when x ∈ D\D4 ,

|y0,x − yx|∞ ≤ Ln0 , if Cn0(yx) ⊇ Cn0−1(zx), when x ∈ D4 ,

(i.e. C0,x is adjacent to the n0-box containing Cn0−1(zx))

and moreover the ∆j,x are spread apart:

(3.43) min
{
d∞(∆j,x,∆j′,x′

); (j, x) 6= (j ′, x′), −1 ≤ j ≤ jx, −1 ≤ j ′ ≤ jx′

}
≥ 10dLn0−1 .

fig3a.eps
68 × 46 mm

x1

x4
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Fig. 3: An example where D1 = {x1, x2}, D2 = {x3}, D3 = {x4}, D4 = {x5, x6}.
In black the boxes Cn0−1(zx), x ∈ D, and in grey the boxes C j,x. The black

boxes are at least at mutual | · |∞-distance 10dLn0 .

We now describe the additional requirements on the πx involving which Di, 1 ≤ i ≤ 4, x
belongs to. So in addition to the above requirements, πx are such that:

• when x ∈ D4:

jx = 0, and in addition to the last line of (3.42), γ0,x ∈ {1, . . . , 2d 5(d−1)}
is arbitrary .

(3.44)

• When x ∈ D3:

(3.45) jx = nx + 3d
def
=

[
(ux + 1)

3

]
+ 3d ,

and the nearest-neighbor path (yj,x) after at most 2d steps is such that Cj,x remains
inside Cn0+1(x) at | · |∞-distance at least 2Ln0 from ∂Cn0+1(x), and moves “along some
coordinate direction”.

• When x ∈ D2:

(3.46) jx ≤ c Lν′
x

n0
,

and the finite sequence (yj,x, γy,x)j≤jx is now such that after at-most 2d steps Cj,x remains
inside Cn0+1(x) at | · |∞-distance at least 2Ln0 from ∂Cn0+1(x), and the path ends with
Cjx,x, ∆jx,x ⊂ C0

n0+1(x), cf. (3.22).
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• When x ∈ D1;

(3.47) jx ≤ c `n0 ,

after at most 2d steps Cj,x, j < jx − 1, remains at least at | · |∞-distance 2Ln0 from
∂Cn0+1(x), and the path ends with Cjx,x, ∆jx,x, so that ∆jx,x ⊆ Cn0+1,γx(x).

We will use the fact that when L0 is large we can select πx, when x ∈ D\(D2∪D4) and
then complete it into πx, x ∈ D, so that γjx,x is arbitrary and yjx,x is an arbitrary point

of, cf. (3.22), Ln0 ZZd ∩ C0
n0+1(x) ∩ B∞(zx, 3L

1+ν′
x

n0 ), when x ∈ D2, when x ∈ D4, Cn0(y0,x)
is an arbitrary adjacent box of Cn0(yx) ⊇ Cn0−1(zx), γ0,x is arbitrary in {1, . . . , 2d 5(d−1)},
and πx, x ∈ D fulfills all the above properties.

We will now derive lower bounds on the exit probabilities of Cn0+1(x) before time
L2

n0+1 ∧TC′
n0+1(x), via Cn0+1,γx(x), when starting in Cn0−1(zx), for x ∈ D. We only need to

consider ω such that ω ∈ Cx, for x ∈ D, cf. (3.38). These lower bounds will yield upper
bounds on the variables Jn0+1,x,Cn0−1(zx),γx, x ∈ D, in terms of Jn0,·,·,· variables to which
we will apply the induction assumption (1.48). In what follows πx, x ∈ D, always stand
for a family of finite sequences satisfying (3.41) - (3.47). We also introduce the shorthand
notation

(3.48) Jj,x = Jn0,yj,x,∆j−1,γj,x
, 0 ≤ j ≤ jx, x ∈ D .

When x ∈ D1: we use the path of boxes Cj,x and “boundary boxes” ∆j,x, 0 ≤ j ≤ jx,
to let the path exit. Noting that c`n0 L

2
n0
< L2

n0+1, when L0 is large, the strong Markov
property implies that for ω ∈ Ω:

(3.49) inf
y∈Cn0−1(zx)

Py,ω

[
HCn0+1,γx (x) ≤ L2

n0+1 ∧ TC′
n0+1(x)

]
≥ ∏

0≤j≤jx

c1 L
−ζJj,x
n0

.

Using that for large L0, cf. (1.15), Ln0 ≤ 2L
(1+a)−1

n0+1 , we now find the desired upper bound:

(3.50) Jn0+1,x,Cn0−1(zx),γx ≤ c `n0(logLn0+1)
−1 + (1 + a)−1

∑
0≤j≤jx

Jj,x .

When x ∈ D2, ω ∈ Cx: the event Cx, cf. (3.24), ensures the presence of many channels
made of at most 4La−νx

n0
n0-good boxes of size L1+νx

n0
, along which, as we now explain, the

diffusion travels well.

Indeed consider B0 and B1 = B0 + L1+νx
n0

e, with |e| = 1, e ∈ ZZd, two neighboring n0-
good boxes. Denote with U the interior of B0 ∪B1, with V0 the concentric sub-cube of B0

with half-side length, with V1 = V0 +L1+νx
n0

e, the corresponding sub-cube of B1, and with
W1 the concentric sub-cube of B1 with quarter side-length. Denote with h a continuous
[0, 1]-valued function, equal to 1 on U and vanishing outside an Ln0−1-neighborhood of
U . We can consider the coupling measure Qn0−1,y, for y ∈ V0, constructed in Proposition
3.1. Choosing in the notations of Proposition 3.1:

k0 =
[
L1+νx

n0

Ln0−1

]2 (
≤ L

2(1+νx)(1+a)−2
n0−1

(3.21)

≤ L4a+a2

n0−1

)
, and γ = Ln0−1 ,

it follows from standard Brownian estimates and Remark 3.2, that

(3.51) inf
y∈V0

Qn0−1,y(X
0

k0
∈ W1, and d(Xk, U

c) ≥ Ln0 , for 0 ≤ k ≤ k0) ≥ c .
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By construction, see above (3.22), in the notations of (3.6), we have for large L0:

(3.52) k2
0(κn0−1 Γn0−1,h + e−κn0−1) ≤ κn0−1 L

8a+4a2

n0−1 L−δ
n0−1

(1.14),(1.40)

≤ L
−δ/2
n0−1 .

So in the notations of (1.8), (1.19) we find for large L0:

(3.53)

inf
y∈V0

Py,ω[HV1 < TU ∧ (k0 L
2
n0−1)] ≥

inf
y∈V0

Py,ω

[
XkL2

n0−1
∈ V1, and for 0 ≤ k < k0, d(XkL2

n0−1
, U c) ≥ Ln0

2
, and

Tn0−1 ◦ θkL2
n0−1

> L2
n0−1

] (2.2)

≥ inf
y∈V0

Qn0−1,y

(
Xk0 ∈ V1, d(Xk, U

c) ≥ Ln0

2
, for

0 ≤ k ≤ k0

)
− k0 e

−κn0−1

(3.6),(3.51),(3.52)

≥ c .

So (3.53) shows in a quantitative way that the diffusion “travels well” from V0 to V1

without leaving U . We now explain how this is used to construct an exit strategy from
Cn0−1(zx) to Cn0+1,γx(x), before time L2

n0+1 ∧ TC′
n0+1(x).

We use the path of boxes Cj,x with boundary boxes ∆j,x, 0 ≤ j ≤ jx, to go from

Cn0−1(zx) to ∆jx,x ⊂ B∞(zx, 2L
1+ν′

x
n0 )∩C0

n0+1(x), and ∆jx,x is chosen to be inside a channel
of n0-good boxes that exit Cn0+1(x) in Cn0+1,γx(x). We use repeatedly (3.53) to control
how the diffusion travels in the channel. The above strategy brings the path to its goal
before time

[
c Lν′

x
n0
L2

n0
+
c Ln0+1

L1+νx
n0

(L1+νx
n0

)2
]
∧ TC′

n0+1(x) ≤ L2
n0+1 ∧ TC′

n0+1(x) .

We thus find that, cf. (3.46), (1.44),

(3.54)

inf
y∈Cn0−1(zx)

Py,ω

[
HCn0+1,γx

(x) ≤ L2
n0+1 ∧ TC′

n0+1(x)

]
≥

cLn0+1/L1+νx
n0 c

cL
ν′x
n0

1 ĩnf
{
L
−ζ

Pjx
j=0 Jj,x

n0

}
,

where ĩnf refers to the fact that one takes the infimum over a collection of finite sequences

πx, with all possible end points yjx,x ∈ Ln0 ZZd ∩ C0
n0+1(x) ∩ B∞(zx, 2L

1+ν′
x

n0 ). This is an
infimum over a set of cardinality smaller than

(3.55) c Ldν′
x

n0

(3.21)

≤ Lda
n0
, L0 large .

Further from our choice in (3.21), we see that

αx − (a− νx) =
3

4
αx − a

2

(3.21)

≥ 9

16
a− a

2
=

a

16
(3.56)

αx − ν ′x =
3

8
αx − a

4

(3.21)

≥ 9

32
a− a

4
=

a

32
.(3.57)

As a result of (3.54), analogously to (3.50), we find that for x ∈ D2, ω ∈ Cx,

Jn0+1,x,Cn0−1(zx),γx ≤(3.58)

c (L(a−νx)
n0

+ Lν′
x

n0
)(logLn0+1)

−1 + (1 + a)−1 ĩnf
{ ∑

0≤j≤jx

Jj,x

}
≤

c L
αx− a

32
n0 (logLn0+1)

−1 + (1 + a)−1 ĩnf
{ ∑

0≤j≤x

Jj,x

}
,
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and ĩnf has the same meaning as in (3.54) and involves the infimum over a set of cardinality
bounded by (3.55).

We now turn to the discussion of x ∈ D3 and x ∈ D4, beginning with some considera-
tions on Cx, when x ∈ D3∪D4. We thus consider an x ∈ D3∪D4, ω ∈ Cx, and y ∈ Cn0(y0)
with d∞(Cn0(y0), Cn0+1(x)) ≤ Ln0 , such that in the notations of (3.31):

(3.59) d(y,Kx,ω)
def
= r > 0 .

For m ≥ 1, we define

Dm = ŷ0 + 2m
([

− Ln0

2
,
Ln0

2

]d

\
(
− Ln0

4
,
Ln0

4

)d)
, with(3.60)

ŷ0 the center of Cn0(y0) ,

Km = Kx,ω ∩Dm, K0 = Kx,ω ∩ Cn0(y0) .(3.61)

Keeping in mind Ln0+1 as a unit scale, we consider for m ≥ 0, the Newtonian capacity of
L−1

n0+1Km:

(3.62) capm = cap
(
L−1

n0+1Km

) (3.32)

≤ κn0−1
Nx

(`n0−1 `n0)
d−2

.

We now consider an arbitrary continuous, [0, 1]-valued, function h such that:

h = 1 on C ′
n0+1(x)\K̃x,ω

(3.31)

⊇ C ′
n0+1(x)\Kx,ω, and

hχn0−1,z ≡ 0, for all z ∈ Ln0−1 ZZd ∩ B̃c
n0−1(ω) .

(3.63)

We can now consider the coupling measure Qn0−1,y from Proposition 3.1. Keeping in mind

that under this measure X
0

k, k ≥ 0, is a Brownian motion starting from y sampled at
times αn0−1 k L

2
n0−1, we see from an analogous calculation as for the classical Wiener test,

cf. [28, p. 72-74], that

(3.64)

Qn0−1,y

[
X

0

k ∈ Kx,ω, for some k ≥ 0
]
≤

c
( ∑

m≥2

capm(2m `−1
n0

)−(d−2) +
∑

m=0,1

capm

(
r

Ln0+1

)−(d−2) ) (3.62)

≤

κn0−1Nx

(
`
−(d−2)
n0−1 +

(
r

Ln0−1

)−(d−2))
,

where we recall the notation (3.59).

We now proceed in a similar fashion as in (3.53), with the help of Proposition 3.1,
choosing in (3.6) γ = Ln0−1, and

(3.65) k0 =
[

1

10

(Ln0+1

Ln0−1

)2]
≤ L4a+2a2

n0−1 .

We find that for large L0:

(3.66)

Py,ω

[
HCn0+1,γx(x) <

(1

5
L2

n0+1

)
∧ TC′

n0+1(x)

]
≥ Py,ω

[
Xk0L2

n0−1
∈ Cn0+1,γx(x),

d(XkL2
n0−1

, C ′
n0+1(x)

c) ≥ Ln0

2
, d(XkL2

n0−1
, B̃c

n0−1(ω) ∩ Ln0−1 ZZd) ≥ 29
√
dLn0−1,

for 0 ≤ k ≤ k0, Tn0−1 ◦ θkL2
n0−1

> L2
n0−1, for 0 ≤ k < k0

]
≥

Qn0−1,y

[
Xk0 ∈ Cn0+1,γx(x), d(Xk, C

′
n0+1(x)

c) ≥ Ln0

2
,

d(Xk, B̃c
n0−1(ω) ∩ Ln0−1 ZZd) ≥ 29

√
dLn0−1, for 0 ≤ k ≤ k0

]
− k0 e

−κn0−1 ,
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where we used that h = 1 on C ′
n0+1(x)\K̃x,ω, cf. (3.63), as well as the localization part of

(2.2). Then with (3.6), denoting with C̃n0+1,γx(x) the concentric box to Cn0+1,γx(x), with
half-size, we find

≥ Qn0−1,u

[
X

0

k0
∈ C̃n0+1,γx(x), d(X

0

k, C
′
n0+1(x)

c) ≥ Ln0 for 0 ≤ k ≤ k0 ,

X
0

k /∈ Kx,ω, for 0 ≤ k ≤ k0

]
− k0 e

−κn0−1 − k2
0(κn0−1 L

−δ
n0−1 + e−κn0−1) ,

where we have used that hχn0−1,z ≡ 0, for z ∈ Ln0−1 ZZd\B̃n0−1(ω), as well as (2.2) in
estimating Γn0−1,h of (3.6).

Combining this with (3.64), (3.65), and the inequality

Qn0−1,y

[
X

0

k0
∈ C̃n0+1,γx(x), d(X

0

k, C
′
n0+1(x)

c) ≥ Ln0 , for 0 ≤ k ≤ k0

]
≥ 4c1

that follows from the definition of c1 below (1.44), and (1.49), we conclude with (1.14),
(1.40) that

(3.67)

Py,ω

[
HCn0+1,γx(x) <

(
1

5
L2

n0+1

)
∧ TC′

n0+1(x)

]
≥

4c1 − κn0−1Nx

(
`
−(d−2)
n0−1 +

(
r

Ln0−1

)−(d−2))
.

This will be a crucial estimate to control exit strategies of the path starting in Cn0−1(zx)
and landing in Cn0+1,γx(x) before time L2

n0+1 ∧ TC′
n0+1(x), when x belongs to D3 ∪ D4.

When x ∈ D3, ω ∈ Cx: we describe the exit strategy. First consider the boxes C j,x, with

boundary boxes ∆j,x, 0 ≤ j ≤ jx
(3.45)
= nx +3d. Consider a path of the diffusion starting in

Cn0−1(zx) successively entering the ∆j,x ⊂ Cj+1,x before time L2
n0

∧ TC′
n0

(yj ;x), 0 ≤ j ≤ jx.

From the time it enters C2d,x until it enters ∆jx,x, the path remains in Cn0+1(x), and has
diameter at least nx Ln0 .

If θ > 0 is such that the above mentioned portion of the path remains in the open set

(3.68) Uθ = {y ∈ lRd, d(y,Kx,ω) < θ} ,

in view of (3.32), the fact that ω ∈ Cx then implies

nx Ln0 < 2Nx(4 D̃n0−1 + θ) .

Choosing

(3.69) r =
nxLn0

2Nx
− 4 D̃n0−1 > 0, when L0 is large, cf. (3.32), (3.45) ,

the path enters Cn0+1(x) ∩ U c
r before time (jx + 1)L2

n0
∧ TC′

n0+1(x) ≤ 1
4
L2

n0+1 ∧ TC′
n0+1(x).

Letting this entrance point in Cn0+1(x) ∩ U c
r play the role of y in (3.67), we can use the

strong Markov property and find that for large L0:

(3.70) inf
w∈Cn0−1(zx)

Pw,ω

[
HCn0+1,γx (x) ≤ L2

n0+1 ∧ TC′
n0+1(x)

]
≥ cjx+1

1 L
(−ζ

P
0≤j≤jx

Jj,x)
n0 2c1 ,
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where we used that thanks to (1.14), (3.20), (3.32), (3.45), (3.69), the last term of (3.67)
is arbitrarily small, when L0 is large. As a result we thus see that when L0 is large:

(3.71) Jn0+1,x,Cn0−1(zx),γx ≤ c nx(logLn0+1)
−1 + (1 + a)−1 ∑

0≤j≤jx

Jj,x .

When x ∈ D4, ω ∈ Cx: we denote with C̃n0,x the union, (we recall that Cn0(yx) ⊇
Cn0−1(zx), cf. (3.42)):

(3.72) C̃n0,x =
⋃

|y−yx|∞≤Ln0

C ′
n0

(y) .

A path of the diffusion inside C̃n0,x starting in Cn0−1(zx) with diameter at least 1
2
Ln0

before time (1
2
L2

n0+1) ∧ TC′
n0+1(x), by the same argument as below (3.68), enters before

that time the set C̃n0,x ∩ U c
r , with

(3.73) r =
Ln0

4Nx
− 4 D̃n0−1 > 0, when L0 is large .

If this entrance point in C̃n0,x ∩ U c
r plays the role of y, (3.67) provides a lower bound on

the probability that the path then reaches Cn0+1,γx(x) before (1
5
L2

n0+1) ∧ TC′
n0+1(x).

Note that when starting at u in Cn0(y), with |y − yx|∞ ≤ Ln0 :

Pu,ω

[
X∗

L2
n0

∧TC′
n0

(y)
≥ 1

2
Ln0

]
≥ c1 L

−ζJx
n0

, where(3.74)

Jx = inf
{
Jn0,y′,Cn0 (y′),γ′ ; |y′ − yx|∞ ≤ Ln0 , γ

′ ∈ {1, . . . , 2d 5(d−1)
}}

.(3.75)

With the strong Markov property, we thus see that for large L0,

(3.76)

inf
y∈Cn0−1(zx)

Py,ω[HCn0+1,γx (x) ≤ L2
n0+1 ∧ TC′

n0+1(x)

]
≥

2c1
(
1 − (1 − c1 L

−ζJx
n0

)[`2n0
/3]) ≥ 2c1

(
1 − (1 − c1 L

−ζJx
n0

)`2n0
/4)

=

inf
y′,γ′

2c1
(
1 − (1 − c1 L

−ζJn0,y′,Cn0 (y′),γ′

n0 )`2n0
/4) ,

where the infimum is over the same set as in (3.75).

We will now employ the bounds (3.50), (3.58), (3.71), (3.76) to bound I in (3.38) and
prove the claim (3.39). To keep track of the infima that enter (3.58), (3.76), we introduce
a set Π of π = (πx)x∈D, such that for any x0 ∈ D2, π ∈ Π, the set of π′ ∈ Π that coincide

with π for x 6= x0 is such that all points of Ln0 ZZd∩C0
n0+1(x)∩B∞(x, 3L

1+ν′
x

n0 ) and all γ in
{1, . . . , 2d 5(d−1)} occur as yjx0,x0

and γjx0,x, and similarly for any x0 ∈ D4, π ∈ Π, the set

of π′ ∈ Π̃ that coincide with π for x 6= x0 is such that all y′ ∈ Ln0 ZZd with Cn0(y
′) ⊂ C̃n0,x

and γ′ ∈ {1, . . . , 2d 5(d−1)} occur as y0,x and γ0,x. With (3.55) we see that when L0 is large
we can choose such a Π with cardinality

(3.77) |Π| ≤ Lda |D2|
n0

c|D4| .

Note that for any π ∈ Π, the sets ∆j,x, −1 ≤ j < jx, x ∈ D, lie at mutual | · |∞-distance
at least 10dLn0−1, cf. (3.43), so that in view of (1.48), for any choice of vj,x ≥ 0, where

(j, x) ∈ J def
= {(j ′, x′); x ∈ D, 0 ≤ j ′ ≤ jx},

(3.78) lP
[
for all (j, x) ∈ J , Jj,x ≥ vj,x] ≤

∏
(j,x)∈J

P [Z ≥ vj,x

]
,
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where Z = Z1, and Zk, k ≥ 1, is an i.i.d. family of non-negative random variables defined
in some auxiliary probability space such that

(3.79) P [Z > v] = L
−Mn0 (1+v)
n0 for v > 0 ,

(so P [Z = 0] = 1 − L
−Mn0
n0 , and we assume from now on that L0 ≥ const (c2) so that∏

n≥0 (1 − c2(logLn)−1) ≥ 1
2
). Let us mention that (3.78) can be rephrased in terms of

upper orthant order, see Shaked-Shanthikumar [24, p. 140]. We denote with Σk, k ≥ 0,
the partial sums

(3.80) Σ0 = 0, Σk = Z1 + · · ·+ Zk, for k ≥ 1 .

Note that for 0 ≤ λ < Mn0 logLn0 , one has

(3.81) E[eλZ ] = 1 +

∫ ∞

0

λeλv L
−Mn0 (v+1)
n0 dv = 1 +

λ

(Mn0 logLn0 − λ)
L
−Mn0
n0 .

Analogously for an arbitrary collection vx ≥ 0, x ∈ D, and λx ∈ [0,Mn0 logLn0), x ∈
D\D4, it follows from (3.78), see also [24, Theorem 5.G.1, p. 141], that:

(3.82)

lP
[ ∑

0≤j≤jx

Jj,x ≥ vx, for x ∈ D
]
≤

exp
{
− ∑

x∈D\D4

λx vx

}
E

[
exp

{ ∑
x∈D\D4

λx

∑
0≤j≤jx

Jj,x

}
, for x ∈ D4, J0,x ≥ vx

] (3.78)

≤

exp
{
− ∑

x∈D\D4

λx vx

} ∏
x∈D\D4

E[eλxΣ(jx+1)]
∏

x∈D4

P [Z ≥ vx]
(3.81)
=

exp
{
− ∑

x∈D\D4

λx vx

} ∏
x∈D\D4

(
1 +

λx L
−Mn0
n0

Mn0 logLn0 − λx

)jx+1 ∏
x∈D4

P [Z ≥ vx] .

We will now use (3.82) to bound I in (3.38). Indeed for large L0, with (3.50), (3.58),
(3.71), (3.76) we have

I ≤ lP
[ ⋃

π∈Π

{
c`n0(logLn0+1)

−1 + (1 + a)−1
∑

0≤j≤jx

Jj,x ≥ ux, for x ∈ D1 ,

c L
αx− a

32
n0 (logLn0+1)

−1 + (1 + a)−1
∑

0≤j≤jx

Jj,x ≥ ux, for x ∈ D2 ,

c nx(logLn0+1)
−1 + (1 + a)−1

∑
0≤j≤jx

Jj,x ≥ ux, for x ∈ D3 ,

1 − 1

2
L−ζux

n0+1 ≤
(
1 − c1 L

−ζJ0,x
n0

)`2n0
/4
, for x ∈ D4

}]
.

(3.83)

From (3.45) - (3.47), jx ≤ c`n0 , for x ∈ D\D4, so using (3.77) and (3.82) with λx = λ∗
def
=

Mn0 logLn0 − 1, for all x ∈ D\D4, and (1 + u) ≤ eu, we find

I ≤ Lda|D2|
n0

c|D4| exp
{
− ∑

x∈D\D4

Mn0(logLn0+1)(ux + 1)(1 − c(logLn0)
−1)

}

∏
x∈D4

P
[
1 − 1

2
L−ζux

n0+1 ≤ (1 − c1 L
−ζZ
n0

)`2n0
/4

]
.

(3.84)
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Note that with L0 large and Πn≥0(1− c2(logLn)−1) ≥ 1
2
, cf. below (3.79), each individual

term of the last product is smaller than

P
[
c `−2

n0
L−ζux

n0+1 ≥ L−ζZ
n0

]
≤ P [ζZ ≥ ζux(1 + a) + 2a− c(logLn0)

−1]

(3.79)

≤ exp
{
− (logLn0)Mn0

(
ux(1 + a) +

2

ζ
a− c(logLn0)

−1 + 1
)}

≤ exp
{
− (logLn0)Mn0

[
(1 + a)(ux + 1) +

3

4

(
2

ζ
− 1

)
a
]}

.

(3.85)

Coming back to (3.84), we obtain

I ≤ L
[−P

x∈D Mn0 (1−c(log Ln0 )−1)(ux+1)]

n0+1 L
−|D4|( 1

ζ
− 1

2
)aMn0

n0 ,

and in view of (1.43), this proves (3.39).

We can now conclude the proof of Proposition 3.3. Coming back to (3.17), (3.36), (3.37),
(3.39), we observe that when L0 is large,

(
c `dn0−1 `

d
n0

)|A| ≤ L3da|A|
n0

(3.18)

≤ Ld 3d+1a| eA|
n0

,

and hence

(3.86)

lP
[
∀x ∈ A, Jn0+1,x,Ax,γx ≥ ux

] (3.36)

≤ L
d3d+1a| eA|
n0 L

−Mn0 (1−c′/ log Ln0 )
P

x∈ eA\M
(ux+1)

n0+1

L
−d3d+1aMn0 | eA4\M|
n0 L

−2d 3d+1M
P

x∈M(ux+1)
n0 ≤

L
d 3d+1a| eA\ eA4|
n0 L

−Mn0 (1−c′/ log Ln0 )
P

x∈ eA
(ux+1)

n0+1 ≤

L
−Mn0 (1−c′′/ log Ln0 )

P
x∈ eA

(ux+1)

n0+1

(3.19)

≤ L
−Mn0 (1−c′′′/ log Ln0 )

P
x∈ eA

(ux+1)

n0+1

where L0 ≥ const(c2), so that
∏

n≥0(1 − c2(logLn)−1) ≥ 1
2

and in particular Mn0 ≥ 1.
We then see that if c2 is chosen to be constant bigger than the constant c′′′ that appears
in the last member of (3.86), then (1.48) holds for n = n0 + 1. This proves Proposition
3.3.

4 Surgery and contraction of Hölder-norms

We continue the proof of Theorem 1.1. The aim is now to propagate the part of (1.47)
that concerns Hölder-norms at level n0 + 1, cf. (1.39). The part of (1.47) that concerns
localization controls has been taken care of in Proposition 2.2. The control of Hölder-
norms will be carried out in the present and in the next section. Here we first perform
“surgery” and remove “Hölder-norm defects” at level n0 −m0 − 1 that occur in the large
box 5Tn0+1, see (2.1). We show that with overwhelming lP-probability the kernel Rn of
the diffusion in the modified environment, when starting in Tn0+1, gets closer and closer
in ‖ · ‖n-norm to R0

n as n goes from n0 −m0 − 1 to n0, cf. Proposition 4.11. The crucial
step comes in Proposition 4.1, where Hölder-norm estimates are derived on what is in
essence the linearization of the evolution after surgery at level n + 1, when expressed in
terms of the one at level n, as n varies from n0 −m0 − 1 to n0.
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As a shorthand notation, we write, cf. Theorem 1.1,

(4.1) n′
0 = n0 −m0 − 1 ≥ 0 ,

and introduce the event, cf. (2.2)

(4.2)

G =
{
ω ∈ Ω; Ln′

0
ZZd ∩ B̃n′

0
(ω)c ∩ (5 Tn0+1) is contained in the union of

at most ˜̀
0 open balls with radius 3D̃n′

0
and center in Ln′

0
ZZd

}
,

where ˜̀
0 =

[
2M0

M0(1 + a)−(m0+2) − 2d

]
+ 1 .

By analogous considerations as in (3.31), (3.32), we see that on Gc, we can find ˜̀
0 disjoint

open balls with centers in Ln′
0
ZZd ∩ B̃n′

0
(ω)c ∩ (5 Tn0+1) and radius 3

2
D̃n′

0
, so that with

(2.3), (1.7), (1.46), (1.47), we see that when L0 is large

lP[Gc] ≤ c
(
L2

n0+1

Ln′
0

)è
0d

L−M0
è
0

n′
0

≤ c L
è
0d(2−(1+a)−(m0+2))−M0

è
0(1+a)−(m0+2)

n0+1

≤ (100(m0 + 2))−1 L−M0
n0+1 .

(4.3)

We introduce the set of finite sequences of length at most ˜̀
0:

Σ =
{
σ = (σ1, σ2, . . . , σè); with

0 ≤ ˜̀≤ ˜̀
0, σi ∈ Ln′

0
ZZd, B(σi, 3D̃n′

0
) ∩ 5 Tn0+1 6= ∅, for 1 ≤ i ≤ ˜̀} ,

(4.4)

we denote with ∅ the only element of Σ with length ˜̀= 0. We can now write

G ⊂ ⋃
σ∈Σ

Gσ, with Gσ =
{
ω ∈ Ω; (5 Tn0+1 ∩ Ln′

0
ZZd) \

è⋃
i=1

B(σi, 3D̃n′
0
) ⊆ B̃n′

0
(ω)

}
,(4.5)

for σ = (σ1, . . . , σè), with 0 ≤ ˜̀≤ ˜̀
0.

Loosely speaking, on Gσ the defects at level n′
0 occurring within 5 Tn0+1 are contained

in the “small set”
⋃è

1 B(σi, 3D̃n′
0
). We are now going to perform surgery on these defects.

To this end for each σ ∈ Σ, we choose a [0, 1]-valued function gσ such that with σ =

(σ1, . . . , σ`), 0 ≤ ˜̀≤ ˜̀
0,

(4.6)





gσ = 0 on
⋃

1≤i≤è
B(σi, 5 D̃n′

0
) ∪ (5 Tn0+1)

c

= 1 on
{
d∞(·, (5 Tn0+1)

c) ≥ 2D̃n′
0

}
\ ⋃

1≤i≤è
B(σi, 7D̃n′

0
)

|gσ(y) − gσ(z)| ≤ c
∣∣∣y − z

Ln′
0

∣∣∣, for all y, z ∈ lRd ,

(with the β = 1 analogue to (1.29), one can for instance construct gσ as a product of

functions attached to each σi, 1 ≤ i ≤ ˜̀, when ˜̀≥ 1).

One can then define the corrected transition kernels for σ ∈ Σ, ω ∈ Ω:

(4.7) R∗
n′

0,σ = R̃0
n′

0
+ gσ(R̃n′

0
− R̃0

n′
0
), cf. (1.20), (1.21) ,
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and by induction for n ∈ [n′
0, n0]:

(4.8)

R∗
n+1,σ = (R0

n + hn S
∗
n,σ)`2n, with S∗

n,σ = R∗
n,σ −R0

n, and hn functions

with values in [0, 1], taking the value 1 on {d∞(·, (5Tn0+1)
c) ≥ 2L2

n+1},
the value 0 on {d∞(·, (5Tn0+1)

c) ≤ L2
n+1}, such that sup

n′
0≤n≤n0

|hn|(n) ≤ c .

Note that R∗
n′

0,σ(x, dy) is supported in B(x, D̃n′
0
), and when L0 is large, it follows by

induction that for n′
0 ≤ n ≤ n0:

(4.9) R∗
n+1,σ(x, dy) = (R∗

n′
0,σ)

L2
n+1/L2

n′
0 (x, dy), if d∞(x, (5Tn0+1)

c) ≥ 3L2
n+1 .

It is also convenient to introduce some further kernels R̃∗
n,σ that have a well-localized

dependence on the environment, and intuitively are “stopped versions” of the kernels R∗
n,σ.

For our purpose the difference between these two kernels will be “negligible”, cf. (4.140),
and (4.12). More precisely, for x ∈ lRd, we consider, (see (1.14) for the notation)

(4.10)
ψn,x(z) a piecewise linear function of |z − x|, with value 1 for

|z − x| ≤ D∗
n

def
= Ln e

3c0(log log Ln)2 , and value 0 for |z − x| ≥ D∗
n + 1 .

We define the probability kernels R̃∗
n,σ, for n′

0 ≤ n ≤ n0, as

(R̃∗
n,σf)(x) =

∑
0≤m<L2

n/L2
n′
0

[
(ψn,xR

∗
n′

0,σ)
m(1 − ψn,x)f

]
(x)

+
[
(ψn,xR

∗
n′

0,σ)
L2

n/L2
n′
0f

]
(x), with f bounded measurable .

(4.11)

The kernel R̃∗
n,σ(x, dy) corresponds to a “soft stopping” with the function ψn,σ of the

Markov chain with kernel R∗
n′

0,σ starting at x, at time L2
n/L

2
n′

0
, see also (4.138) for a

trajectorial interpretation. In particular R̃∗
n′

0,σ coincides with R∗
n′

0,σ and R̃∗
n,σ(x, dy) is

supported in B(x,D∗
n + 1 + D̃n′

0
). It is also convenient to introduce

(4.12) S̃∗
n,σ = R̃∗

n,σ −R0
n ,

and we now see that for n′
0 ≤ n ≤ n0, x ∈ lRd,

(4.13) R̃∗
n,σ(x, dy) or S̃∗

n,σ(x, dy) depend in a GB(x,D∗
n+1+ eDn′

0
)-measurable fashion in ω .

In analogy with (1.24), we also define for σ ∈ Σ, ω ∈ Ω, n′
0 ≤ n ≤ n0, x ∈ lRd,

d̃∗n,σ(x, ω) =
∫

(y − x) R̃∗
n,σ(x, dy) =

∫
(y − x) S̃∗

n,σ(x, dy)

(γ̃∗n,σ)
i,j(x, ω) =

∫
(y − x)i (y − x)j S̃

∗
n,σ(x, dy), 1 ≤ i, j ≤ d .

(4.14)

We want to compare R∗
n,σ with R0

n on the event Gσ, when starting reasonably away from
(5 Tn0+1)

c, for n′
0 ≤ n ≤ n0 + 1. Note that with (4.8), using perturbation expansion for

n′
0 ≤ n ≤ n0:

S∗
n+1,σ = (R0

n + hn S
∗
n,σ)

`2n − (R0
n)`2n + (R0

n)`2n − R0
n+1

(1.21),(1.54)
=

∑
k0+···+km+m=`2n

ki≥0,m≥1

(R0
n)k0 hn S

∗
n,σ(R

0
n)k1 hn S

∗
n,σ . . . hn S

∗
n,σ(R

0
n)km

+ PαnL2
n+1

− Pαn+1L2
n+1

.

(4.15)
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In essence we are going to first study the “linearized” term corresponding to m = 1 in
the above series, however replacing S∗

n,σ, with the more convenient S̃∗
n,σ, due to their

better localization properties. With this in mind, we introduce for σ ∈ Σ, n′
0 ≤ n ≤ n0,

v ∈ Ln+1 ZZd, with the notation (1.38), the operator

(4.16) L̃σ,n,v =
∑

0≤k<`2n

χn+1,v(R
0
n)k hn,v S̃

∗
n,σ(R

0
n)`2n−k−1 χ̃n+1,v ,

where we have used the shorthand notations hn,v(·) = hn(·)χDn+1(· − v), and χ̃n+1,v(·) =
χ eDn+1

(· − v), cf. (1.37). We also introduce, cf. (1.13), (1.40),

(4.17) νn = 2 κn′
0
(Ln′

0
)−δ

(
Ln

Ln′
0

)−β/4

, for n′
0 ≤ n ≤ n0 + 1 ,

where it should be observed that β
4
> δ, and κn is defined in (2.4). Our first important

step comes with

Proposition 4.1. When L0 is large, if for some n ∈ [n′
0, n0],

(4.18) lP
[

sup
y∈[0,Ln]d

{∣∣∣
d̃∗n,σ=∅
Ln

(y, ω)
∣∣∣ ∨

∣∣∣
γ̃∗n,σ=∅
L2

n

(y, ω)
∣∣∣ > νn

}]
≤ L−2

n0
,

then for any σ ∈ Σ, v ∈ Ln+1 ZZd, and event Gσ,n,v ⊆ Gσ on which

(4.19) sup
x∈Sn,v

‖χn,x S̃
∗
n,σ‖n ≤ νn, with Sn,v

def
= Ln ZZd ∩ {d(·, Supphn,v) ≤ 20

√
dLn},

one has

(4.20) lP
[
Gσ,n,v ∩

{∥∥L̃σ,n,v

∥∥
n+1

>
κn νn

`
β/3
n

}]
≤ e−κn0 .

Proof. Without loss of generality we assume that

(4.21) hn,v is not identically 0 ,

otherwise there is nothing to prove. We decompose L̃σ,n,v into

(4.22) L̃σ,n,v = LA + LB + LC + LD ,

where the operators on the right-hand side of (4.22) are respectively obtained by restricting
the summation over k in (4.16) to

IA = {0}, IB =
{
k : 0 < k ≤ `2n

2

}
, IC =

{
k :

`2n
2
< k ≤ `2n − `

2
3

β
n

}

ID = {k : `2n − `
2
3

β
n < k ≤ `2n − 1} .

(4.23)

We will obtain controls like (4.20) on each term of the decomposition, with the role of

`
β/3
n replaced with `1−β

n for LA, `
(1−β)∧( d

2
−1)

n for LB, `
β/3
n = `

β/3∧β∧( d
2
−1)

n for LC , and `
β/3
n

for LD, cf. Lemmas 4.2, 4.3, 4.5, 4.6. We begin with the control of LA.
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Lemma 4.2. When L0 is large, for σ ∈ Σ, n′
0 ≤ n ≤ n0, v ∈ Ln+1 ZZd, with (4.21),

ω ∈ Ω:

(4.24) ‖LA‖n+1 ≤
κn

`1−β
n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.

Proof. By construction, cf. (4.19), Supp hn,v ⊆ ⋃
x∈Sn,v

B(x,
√
dLn), and for x ∈ Sn,v,

y ∈ B(x, 20
√
dLn), f with |f |(n+1) ≤ 1, one has

(S̃∗
n,σ(R

0
n)`2n−1 χ̃n+1,vf)(y) = (S̃∗

n,σH)(y), with

H(z) = (Pαn(`2n−1)L2
n
χ̃n+1,vf)(z) − (Pαn(`2n−1)L2

n
χ̃n+1,vf)(x) ,

(4.25)

simply because S̃∗
n 1 = 0. With the help of (1.49), (1.56), we find

(4.26) |∇H| ≤ c L−1
n+1, and H(x) = 0 .

Using a cut-off function and (A.6) from the Appendix, we can thus find H̃ such that

(4.27) Supp H̃ ⊂ B(x, 4D∗
n), |H̃| ≤ |H|, H̃ = H on B(x, 3D∗

n), and |H̃|(n) ≤
κn

`n
.

With the remark above (4.12) on the support of R̃∗
n,σ(y, ·), we see that

(4.28) χn,x S̃
∗
n,σ(H − H̃) = −χn,xR

0
n(H − H̃) ,

and with (1.49), (1.56) and (4.27), we find

(4.29) |χn,x (S̃∗
n,σ H − S̃∗

n,σ H̃)|(n) ≤ e−κn .

As a result of (4.25), (4.29), we obtain

|χn,x S̃
∗
n,σ(R

0
n)`2n−1 χ̃n+1,v f |(n) ≤ |χn,x S̃

∗
n,σ H̃|(n) + e−κn

(4.27)

≤ ‖χn,x S̃
∗
n,σ‖n

κn

`n
+ e−κn .

Letting the family of functions hn,v χn,x S̃
∗
n,σ(R0

n)`2n−1 χ̃n+1,v f, x ∈ Sn,v play the role of the
(gi)i∈I in Lemma A.1 of the Appendix, with (1.29) we find for large L0:

(4.30) |χn+1,v hn,v S̃
∗
n,σ(R

0
n)`2n−1 χ̃n+1,v f |(n) ≤

κn

`n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
,

and since ‖LA‖n+1 ≤ `βn‖LA‖n, (4.24) follows.

We now turn to the control of LD.

Lemma 4.3. When L0 is large, for σ ∈ Σ, n′
0 ≤ n ≤ n0, v ∈ Ln+1 ZZd with (4.21), ω ∈ Ω:

(4.31) ‖LD‖n+1 ≤
κn

`
β/3
n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.
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Proof. Note that for k < `2n, cf. (4.22), and f with |f |(n+1) ≤ 1, with (1.55), (1.49),

|(R0
n)`2n−k−1 χ̃n+1,v f |(n+1) ≤ c. Hence for x ∈ Sn,v, repeating the construction used in

Lemma 4.2, we can find H̃ with Supp H̃ ⊂ B(x, 4D∗
n), |H̃|(n) ≤ κn `

−β
n such that

(4.32) |χn,x S̃
∗
n,σ(R

0
n)`2n−k−1 χ̃n+1,v f − χn,x S̃

∗
n,σ H̃|(n) ≤ e−κn .

With L0 large we thus find that

(4.33) |χn,x S̃
∗
n,σ(R

0
n)`2n−k−1 χ̃n+1,v f |(n) ≤

κn

`βn

(
sup

x′∈Sn,v

‖χn,x′, S̃∗
n,σ‖n + e−κn

)
.

Note also that with (1.49), (1.56), for t ≥ αn L
2
n+1/2,

(4.34) |Pt g|(n+1) ≤ c |g|∞, when g is bounded measurable ,

so that for each k ∈ ID,

(4.35) |χn+1,v (R0
n)k hn,v S̃

∗
n,σ(R0

n)`2n−k−1 χ̃n+1,v f |(n+1) ≤
κn

`βn

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.

Since |ID| ≤ `
2
3

β
n , summing over k ∈ ID, we obtain (4.31).

We continue with the analysis of LC and LB. We first need to recall some facts related
to Taylor’s formula. For g a C2-function on lRd, Taylor’s formula with integral remainder
of order 2 states that for y, z ∈ lRd:

(4.36) g(y + z) = g(y) +
∑
|γ|≤2

1

γ!
Dγg(y) zγ + rg(y, z)

where γ = (γ1, . . . , γd) is a multi-index, |γ| = γ1 + · · ·+γd, γ! = γ1! . . . γd!, z
γ = zγ1

1 . . . zγd

d ,
and

(4.37) rg(y, z) =

∫ 1

0

3(1 − t)2
∑
|γ|=3

1

γ!
Dγ g(y + tz) zγ dt ,

and otherwise hopefully obvious notations. We recall the definition (4.14), and the nota-
tion (1.54).

Lemma 4.4. When L0 is large, σ ∈ Σ, n′
0 ≤ n ≤ n0, ω ∈ Ω, for 1 ≤ j ≤ `2n, x ∈ Ln ZZd,

|y − x| ≤ 10
√
dLn, f bounded measurable,

∫
S̃∗

n,σ(y, dz)[(R
0
n)j f ](z) = d̃∗n,σ(y, ω) · (DPαn jL2

n
f)(y)

+
1

2
γ̃∗n,σ(y, ω) · (D2PαnjL2

n
f)(y) +Hj,f(y),

(4.38)

and

(4.39) |Hj,f(y)| ≤ c
(
1 +

(D∗
n)1−β

√
j L

1−β
n

)
D∗3

n

j
3
2 L3

n

( |f |1
(
√
j Ln)d

∧ |f |∞
)
(‖χn,x S̃

∗
n,σ‖n + e−κn) .
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Proof. With (4.36), (1.21), we can write:

(R0
n)j f(y + z) = PαnjL2

n
f(y) + (DPαnjL2

n
f)(y) · z +

1

2
(D2PαnjL2

n
f(y) · z ⊗ z + rj,f,y(z) ,

and rj,f,y(· − y) coincides in B(y, 3D∗
n) with r̃(·) which is supported in B(y, 4D∗

n), and
such that

(4.40) |r̃|(n) ≤ c
D∗3

n

j
3
2L3

n

[ |f |1
(
√
j Ln)d

∧ |f |∞
](

1 +
D

∗(1−β)
n√
j L

(1−β)
n

)
.

Indeed with (4.37), (1.49), (1.56):

(4.41) sup
x∈B(y,5D∗

n)

|rj,f,y(x− y)| ≤ aj,n
def
= c

D∗3
n

j
3
2L3

n

[ |f |1
(
√
j Ln)d

∧ |f |∞
]
,

and for w,w′ ∈ B(y, 5D∗
n),

(4.42)

|rj,f,y(w − y) − rj,f,y(w
′ − y)| ≤ c sup

0≤t≤1,|γ|=3

|(Dγ PαnjL2
n
f)(y + t(w − y)) ·

(w − y)γ − (DγPαnjL2
n
f)(y + t(w′ − y)) · (w′ − y)γ| ≤

c sup
z∈B(y,5D∗

n)
|γ|=3

|DγPαnjL2
n
f(z)|D∗2

n |w − w′| +

c|w − w′| sup
z∈B(y,5D∗

n)
|γ|=4

|DγPαnjL2
n
f(z)|D∗3

n

(1.56)

≤

c |w − w′|
D∗

n

(
D∗3

n

j
3
2 L3

n

+
D∗4

n

j2 L4
n

)( |f |1
(
√
j Ln)d

∧ |f |∞
)
≤ c

∣∣∣w − w′

D∗
n

∣∣∣
β

aj,n

(
1 +

D∗
n√
jLn

)
.

So using a cut-off function, we obtain the claim (4.40). Since R̃∗
n,σ(y, dz) is supported in

B(y, 3D∗
n), cf. above (4.12),

(4.43)
∣∣∣
∫
S̃∗

n,σ(y, dz)(rj,f,y(z−y)− r̃(z))
∣∣∣ =

∣∣∣
∫
R0

n(y, dz)(rj,f,y(z−y)− r̃(z))
∣∣∣ ≤ caj,n e

−κn

using Cauchy-Schwarz’s inequality, (1.49), (1.59) in the last step.

Taking into account that χn,x(y) = 1, and

Hj,f(y) =
∫
S̃∗

n,σ(y, dz) rj,f,y(z − y) ,

the claim (4.39) now follows from the above inequality and (4.40).

We now decompose LC , cf. (4.22), into

(4.44) LC = L1
C + L2

C ,

where in the notations of (4.14), (4.38)

L1
C f(y) =

∑
k∈IC

χn+1,v(y)
{

(R0
n)k

(
hn,v(·)

[
d̃∗n,σ(·, ω) · (DPαn(`2n−k−1) χ̃n+1,v f)(·)

+
1

2
γ̃∗n,σ(·, ω) · (D2Pαn(`2n−k−1) χ̃n+1,v f)(·)

])}
(y)

and
L2

C f(y) =
∑

k∈IC

χn+1,v(y)
∫

(R0
n)k(y, dz) hn,v(z)H`2n−k−1,eχn+1,v f(z) .

Our next step comes with
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Lemma 4.5. When L0 is large, σ ∈ Σ, n′
0 ≤ n ≤ n0, v ∈ Ln+1 ZZd with (4.21), ω ∈ Ω:

(4.45) ‖L2
C‖n+1 ≤

κn

`
β/3
n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.

Moreover, if n is as in (4.18), with the notation (4.17) and above (4.19)

(4.46) lP
[
Gσ,n,v ∩

{
‖L1

C‖n+1 ≥
κn

`
β∧( d

2
−1)

n

νn

}]
≤ e−κn0 .

Proof. We begin with the proof of (4.45). We choose f with |f |(n+1) ≤ 1, and deduce
from (4.39) and (4.34), that

(4.47) ‖L2
C‖n+1 ≤

∑
k∈IC

κn(`2n − k − 1)−
3
2

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.

Noting that
∑

j≥`
2β/3
n

j−3/2 ≤ c`
−β/3
n , we find (4.45).

We then turn to the proof of (4.46). We further decompose L1
C into

(4.48) L1
C =

∑
γ∈{0,1}d

LC,γ + L′
C ,

where

LC,γ f(y) =
∑

q∈Λγ ,k∈IC

χn+1,v(y) Φq,k(f)(y) ,(4.49)

L′
C f(y) =

∑
q∈Λ′,k∈IC

χn+1,v(y) Φq,k(f)(y) ,(4.50)

and we have used the notations for q ∈ ZZd, k ≥ 0,

(4.51)
Φq,k(f)(y) =

∫

Bq

PαnkL2
n
(y, dz) hn,v(z)

[
d̃∗n,σ(z, ω) · (DPαn(`2n−k−1)L2

n
χ̃n+1,v f)(z)

+
1

2
γ̃∗n,σ(z, ω) · (D2Pαn(`2n−k−1)L2

n
χ̃n+1,v f)(z)

]
,

Bq = 10D∗
n(q + [0, 1]d),(4.52)

Λ′ =
{
q ∈ ZZd; Bq ∩

(⋃
1≤i≤èB(σi, 20

√
dD∗

n

)
6= ∅

})
, with(4.53)

σ = (σ1, . . . , σè), 0 ≤ ˜̀≤ ˜̀
0 ,

Λγ =
{
q ∈ ZZd\Λ′; qi = γi mod 2, for 1 ≤ i ≤ d, and Bq ∩ Supp hn,v 6= ∅

}
.(4.54)

Note that in view of (1.7) and (4.13), for f bounded measurable and γ ∈ {0, 1}d,

(4.55) {(Φq,k(f))0≤k≤`2n} are independent under lP, as q varies over Λγ .

Note also that when L0 is large, with σ, n, v as above (4.45) and γ ∈ {0, 1}d, by the
properties of the support of hn,v, cf. below (4.16),

(4.56) |Λγ| ≤ c
(
Dn+1

D∗
n

)d

≤ κn `
d
n, |Λ′| ≤ c .
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We use wavelets, see (1.34), to control ‖L1
C‖n+1, and recall from Proposition A.2 in the

Appendix that for γ ∈ {0, 1}d:

(4.57) ‖LC,γ‖n+1 ≤ c sup
α,`,p

∑
α′,`′,p′

2β`′

2β`

1

2d`

∣∣〈θα,`,p, LC,γ θα′,`′,p′
〉∣∣ ,

where the supremum runs over α ∈ {0, 1}d, ` ≤ Jn+1, cf. (A.7), p ∈ ZZd, with α 6= 0,
when ` < Jn+1, and similar constraints for α′, `′, p′ in the sum. An analogous inequality
holds for L′

C in place of LC,γ. From now we consider triplets

(α, `, p), (α′, `′, p′) satisfying the above conditions and such that

Supp θα,`,p ∩ Suppχn+1,v 6= ∅, and Supp θα′,`′,p′ ∩ Supp χ̃n+1,v 6= ∅ ,(4.58)

cf. below (4.16) for the notation.

Given γ ∈ {0, 1}d, we introduce an enumeration qj, 1 ≤ j ≤ |Λγ|, of Λγ. We then
define for 0 ≤ j ≤ |Λγ|

Mj = 2−d`
∑

k∈IC ,j′≤j

〈
θα,`,p, χn+1,v ψj′,k

〉
, for j ≥ 1, M0 = 0,(4.59)

where in the notations of (4.51) ,

ψj,k(y)
def
= Φqj ,k(θα′,`′,p′)(y) .(4.60)

We now bound |Mj −Mj−1|, first when ω ∈ Gσ,n,v, cf. above (4.19), and then for a general
ω ∈ Ω. Note that with analogous arguments as in the proof of Lemma 2.1, in view of
(4.14), (4.19), (1.49), for ω ∈ Gσ,n,v,

(4.61) for y ∈ Supp hn,v, |d̃∗n,σ(y, ω)| ≤ κn νn Ln, |γ̃∗n,σ(y, ω)| ≤ κn νn L
2
n .

In addition to (4.58), let us first assume that

(4.62) 2`′ ≤ Ln .

Then for y, y′ ∈ B(v, 20
√
dLn+1) ∩ Supp θα,`,p, ω ∈ Gσ,n,v, 1 ≤ j ≤ |Λγ|, with the help of

(1.49), (1.56), (4.61), in view of (4.51), (4.60), we find when L0 is large:

(4.63)

∑
k∈IC

|ψj,k(y) − ψj,k(y
′)| ≤ c 2`

Ln+1

(
D∗

n

Ln+1

)d ∑
k∈IC[

κn νn Ln(`2n − k − 1)−
1
2 L−1

n exp
{
− c|2`′p′ − 10D∗

n qj |2
(`2n − k − 1)L2

n

}

(
2`′(`2n − k − 1)−

1
2 L−1

n

)d
+ κn νn L

2
n(`2n − k − 1)−1 L−2

n

exp
{
− c|2`′p′ − 10D∗

n qj |2
(`2n − k − 1)L2

n

}(
2`′(`2n − k − 1)−

1
2 L−1

n

)d
]
,

where in the expression inside the exponential we made use of (4.62), of Supp θα′,`′,p′

(1.34)

⊆
B(2`′p′, c2`′), and of (`2n−k−1)1/2 Ln ≥ D∗

n, for k ∈ IC . Hence the left-hand side of (4.63)
is smaller than:

(4.64)

c 2`

Ln+1
κn νn

(
D∗

n

Ln+1

)d ∑
k∈IC

(`2n − k − 1)−
1
2

exp
{
− c|2`′p′ − 10D∗

n qj |2
(`2n − k − 1)L2

n

}(
2`′(`2n − k − 1)−

1
2 L−1

n

)d
.
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Using a comparison with
∫ ∞
0

s−ρ e−u/sds, we find that

(4.65) for ρ > 1, u > 0,
∑

1≤k<∞
k−ρ exp

{
− u

k

}
≤ c(ρ)(u−(ρ−1) ∧ 1),

so that

∑
k∈IC

(`2n − k − 1)−
(d+1)

2 exp
{
− c|2`′p′ − 10D∗

n qj |2
(`2n − k − 1)L2

n

}
≤ c

[(
Ln

|2`′p′ − 10D∗
nqj |

)d−1

∧ 1
]
,

and coming back to (4.63), (4.64), we find that for ω ∈ Gσ,n,v, 1 ≤ j ≤ |Λγ|, y, y′ ∈
B(v, 20

√
dLn+1) ∩ Supp θα,`,p:

(4.66)
∑

k∈IC

|ψj,k(y) − ψj,k(y
′)| ≤ κn νn

2`

Ln+1

(
D∗

n

Ln+1

)d ( 2`′

Ln

)d[( Ln

|2`′p′ − 10D∗
nqj |

)d−1

∧ 1
]
,

and with entirely analogous bounds

(4.67)
∑

k∈IC

|ψj,k(y)| ≤ κn νn

(
D∗

n

Ln+1

)d (
2`′

Ln

)d[( Ln

|2`′p′ − 10D∗
nqj |

)d−1

∧ 1
]
.

We now replace (4.62) with:

(4.68) Ln < 2`′ ≤ Ln+1 .

We then write for y, y′ ∈ B(v, 20
√
dLn+1) ∩ Supp θα,`,p, ω ∈ Gσ,n,v, 1 ≤ j ≤ |Λγ|:

(4.69)

∑
k∈IC

|ψj,k(y) − ψj,k(y
′)| ≤ c 2`

Ln+1

(
D∗

n

Ln+1

)d

κn νn

[ ∑
k∈IC ,

2`′≤(`2n−k−1)1/2Ln

(`2n − k − 1)−
(d+1)

2 exp
{
− c|2`′p′ − 10D∗

n qj |2
(`2n − k − 1)L2

n

} (
2`′

Ln

)d

+

∑
k∈IC ,

2`′>(`2n−k−1)1/2Ln

(`2n − k − 1)−
1
2 exp

{
− c(|2`′p′ − 10D∗

n qj | − c2`′)2+
(`2n − k − 1)L2

n

}]
,

where we omitted the intermediary step, cf. (4.63), where terms corresponding to d̃∗n,σ and
γ̃∗n,σ are separately bounded. Note that

(4.70)
∑

k∈IC ,

2`′≤(`2n−k−1)1/2Ln

(`2n − k− 1)−
(d+1)

2 ≤ c
(
Ln

2`′

)d−1

,
∑

k∈IC ,

2`′>(`2n−k−1)1/2Ln

(`2n − k− 1)−
1
2 ≤ c

2`′

Ln
.

These inequalities together with (4.65) show that for ω ∈ Gσ,n,v, y, y
′ ∈ B(v, 20

√
dLn+1)∩

Supp θα,`,p, 1 ≤ j ≤ |Λγ|, with (4.68) we have:

(4.71)

∑
k∈IC

|ψj,k(y) − ψj,k(y
′)| ≤ κn νn

(
2`

Ln+1

)(
D∗

n

Ln+1

)d [(
2`′

Ln

)d

{(
Ln

2`′

)d−1

∧
(

Ln

|2`′p′ − 10D∗
nqj |

)d−1}
+

(
2`′

Ln

)
exp

{
− c

(|2`′p′ − 10D∗
nqj | − c 2`′)2+

22`′

}]
≤

κnνn

(
2`

Ln+1

)(
D∗

n

Ln+1

)d 2`′

Ln

[
1 ∧

(
2`′

|2`′p′ − 10D∗
nqj |

)d−1

+ exp
{
− c

( |2`′p′ − 10D∗
nqj |

2`′

)2}]
,

46



and with entirely similar estimates we also have in this situation

(4.72)

∑
k∈IC

|ψj,k(y)| ≤ κn νn

(
D∗

n

Ln+1

)d 2`′

Ln

[
1 ∧

(
2`′

|2`′p′ − 10D∗
nqj |

)d−1

+

exp
{
− c

( |2`′p′ − 10D∗
nqj |

2`′

)2}]
.

Using the fact that
∫
θα,`,p(y) dy = 0, when α 6= 0, cf. (A.12), we see collecting (4.66),

(4.67), (4.71), (4.72) that for large L0, ω ∈ Gσ,n,v, γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′) as in
(4.58) ,

(4.73) |Mj −Mj−1| ≤ δ`,`′(j), 1 ≤ j ≤ |Λγ| ,

where up to a constant multiplicative factor, δ`,`′(j) is given by the right-hand side of
(4.66) when 2`′ ≤ Ln, and by the last member of (4.71) when Ln < 2`′ ≤ Ln+1.

Observe that when we consider a general ω in place of ω ∈ Gσ,n,v, as above, we can
use analogous bounds with the only difference that (4.61) is now replaced with:

(4.74) |d̃∗n,σ(y, ω)| ≤ κn Ln, |γ̃∗n,σ(y, ω)| ≤ κn L
2
n, for σ ∈ Σ, y ∈ lRd, ω ∈ Ω .

Hence we find that for ω ∈ Ω, γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′) as in (4.58),

(4.75) |Mj −Mj−1| ≤ κn ν
−1
n δ`′,`′(j), 1 ≤ j ≤ |Λγ| .

Now for γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′) as in (4.58), we introduce the conditional proba-
bility:

(4.76) l̃P(·) = lP
[
· | |Mj −Mj−1| ≤ δ`,`′(j), 1 ≤ j ≤ |Λγ|

]
,

and denote with l̃E the corresponding expectation. We note that thanks to the indepen-
dence under lP of the increments Mj −Mj−1, 1 ≤ j ≤ |Λγ|, cf. (4.55), these increments

are independent under l̃P as well. We will now bound

(4.77) ∆j
def
= l̃E [Mj −Mj−1], 1 ≤ j ≤ |Λγ| .

First note that for y ∈ ⋃
q∈Λγ

Bq, cf. (4.52), (4.54), with L0 large, we can replace R∗
n′

0,σ

with R̃n′
0

in the right-hand side of (4.11), when calculating d̃∗n,σ(y, ω), γ̃∗n,σ(y, ω) in (4.14).
So by isotropy, cf. (1.12), for y ∈ ⋃

q∈Λγ
Bq:

(4.78) lE[d̃∗n,σ(y, ω)] = 0 .

Moreover for y in the same set, with 1 ≤ i, j ≤ d, we have

(4.79) lE[(γ̃∗n,σ)
i,j(y, ω)]

(1.25)
= lE

[
(γ̃∗n,σ)

i,j(y, ω)− (γ̃n)i,j(y, ω)
]
.

On the event where for all x ∈ Ln ZZd with Supp χn,x ∩ B(y, 3D∗
n) 6= ∅, x ∈ B̃n(ω), and

all x′ ∈ Ln′
0
ZZd with Supp χn′

0,x ∩B(y, 3D∗
n) 6= ∅, x′ ∈ Bn′

0
(ω), the integrand in the right-

hand side of (4.79), using the remark above (4.78), the strong Markov property, and the
localization estimate in (2.2), is bounded in absolute value by

cD∗2
n

((
Ln

Ln′
0

)2

e
−κn′

0 + e−κn

)
≤ e−κn0 , with L0 large .
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Bounding with (1.47) the probability of the complement of this event, we see that for
large L0, γ ∈ {0, 1}d, y ∈ ⋃

q∈Λγ
Bq,

|lE[γ̃∗n,σ(y, ω)]| ≤ cD∗2
n

[(
D∗

n

Ln′
0

)d

L−M0

n′
0

+ κn L
−M0
n

]
+ e−κn0

≤ κn0 L
(2+d)−M0(1+a)−(m0+1)

n0

(1.46)

≤ L−10
n0

.

(4.80)

We then observe that the bounds we derived below (4.61) until (4.73) show that when
1 ≤ j ≤ |Λγ|, with κn as in (4.61), (α, `, p), (α′, `′, p′) as in (4.58),

(4.81)
if |d̃∗n,σ(y, ω)| ≤ κn νn Ln, |γ̃∗n,σ(y, ω)| ≤ κn νnL

2
n, for all y ∈ Bqj

, then

|Mj −Mj−1| ≤ δ`,`′(j) .

Hence on the event {|Mj −Mj−1| > δ`,`′(j)}, for some y ∈ Bqj
, (4.81) does not hold, and

by the remark above (4.78), we can replace σ with ∅(∈ Σ), when negating (4.81). We thus
find with (4.18) that when L0 is large, for γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′) with (4.58), for
1 ≤ j ≤ |Λγ|:

(4.82) lP[|Mj −Mj−1| > δ`,`′(j)] ≤ c
|Bqj

|
Ld

n

L−2
n0

(4.52)

≤ κn L
−2
n0
.

Coming back to (4.78), (4.80), to replace (4.61), the estimates (4.61) until (4.73) now
show that with 1 ≤ j ≤ |Λγ|:

(4.83) |lE[Mj −Mj−1]| ≤ (κn νn L
2
n)−1 L−10

n0
δ`,`′(j) ≤ L−10

n0
δ`,`′(j)

and noting that

lE[Mj −Mj−1]
(4.77)
= ∆j lP

[
|Mj −Mj−1| ≤ δ`,`′(j)

]
+ lE

[
Mj −Mj−1, |Mj −Mj−1| > δ`,`′(j)

]
,

we obtain from (4.75), (4.82), (4.83), that for γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′) as in (4.58),
1 ≤ j ≤ |Λj|:

(4.84) |∆j| ≤ 2(L−10
n0

+ κn L
−2
n0
ν−1

n ) δ`,`′(j) ≤ L−1
n0
δ`,`′(j)

def
= δ̃`,`′(j) .

Observe that under l̃P, M|Λγ |−
∑|Λγ |

j=1 ∆j is a sum of |Λγ| independent variables respectively

bounded by 2 δ`,`′(j). Note also that when 2`′ ≤ Ln, by (4.66), (4.67)

( ∑
1≤j≤|Λγ |

δ`,`′(j)
2
) 1

2 ≤ κn νn
2`

Ln+1

(
D∗

n

Ln+1

)d (
2`′

Ln

)d

≤ κn νn
2`

Ln+1

(
2`′

Ln+1

)d def
= σn(`, `′) ,

(4.85)

whereas for Ln < 2`′ ≤ Ln+1, with (4.71), (4.72)

( ∑
1≤j≤|Λγ |

δ`′,`′(j)
2
) 1

2 ≤ κn νn
2`

Ln+1

(
D∗

n

Ln+1

)d 2`′

Ln

[(
2`′

D∗
n

)d

+
(

2`′

D∗
n

)d] 1
2

≤ κn νn `
−d
n

2`

Ln+1

(
2`′

Ln

) d
2
+1 def

= σn(`, `′) .

(4.86)
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Note also that when L0 is large, for `, `′ ≤ Jn+1, γ ∈ {0, 1}d:

∑
1≤j≤|Λγ |

δ̃`,`′(j)
(4.84)

≤
Cauchy−Schwarz

|Λγ|
1
2 L−1

n0

( ∑
1≤j≤|Λγ |

σ`,`′(j)
2
) 1

2

(4.56),(1.14)

≤ 1

2
σn(`, `′) .

(4.87)

We thus see that for u ≥ σn(`, `′), with a slight variation of Azuma’s inequality, cf. [1], or
[30], p. 308,

(4.88)

lP
[
|M|Λγ || ≥ u, Gσ,n,v

]
≤ l̃P

[
|M|Λγ || ≥ u

]
≤

l̃P
[
|M|Λγ | −

∑
1≤j≤|Λγ |

∆j| ≥ u − ∑
1≤j≤|Λγ |

δ̃`,`′(j)
]
≤ 2 exp

{
− 1

32

(
u

σn(`, `′)

)2}
.

If we define for γ ∈ {0, 1}d the event

(4.89)
Gσ,n,v,C,γ = Gσ,n,v ∩

{
for (α, `, p), (α′, `′, p′), as in (4.58),

1

2d`

∣∣〈θα,`,p,LC,γ θα′,`′,p′
〉∣∣ ≤ σn(`, `′)(1 + `− + `′−) e(log log Ln)2

}
,

(`−, `′− denote the respective negative parts of `, `′), we see that when L0 is large

(4.90)

lP
[
Gσ,n,v\Gσ,n,v,C,γ

]
≤

∑
`,`′≤Jn+1

c
(
Dn+1

2`

)d (
D̃n+1

2`′

)d

exp
{
− 1

32
e2(log log Ln)2(1 + `− + `′−)2

}
≤

c
( ∑

`≤Jn+1

(
D̃n+1

2`

)d

exp
{
− 1

64
e2(log log Ln)2(1 + `2−)

})2

≤ e−κn0 .

Observe that on Gσ,n,v,C,γ in view of (4.57) one has

(4.91) ‖LC,γ‖n+1 ≤ Γ′ def
= c sup

α,`,p

∑
α′,`′,p′

2β`′

2β`
σn(`, `′) e(log log Ln)2(1 + `− + `′−) ,

with (α, `, p), (α′, `′, p′) varying over the set described in (4.58). We now write:

(4.92) Γ′ ≤ Γ′
1 + Γ′

2 ,

where Γ′
1 corresponds to the expression in the right-hand side of (4.91) with 2`′ ≤ Ln, and

Γ′
2 to the expression with Ln < 2`′ ≤ Ln+1. We thus see that for large L0,

Γ′
1

(4.85)

≤ κn νn sup
2`≤Ln+1

2`

Ln+1

∑
2`′≤Ln,p′

(
2`′

Ln+1

)d

(1 + `− + `′−)
2β`′

2β`

≤ κn νn sup
2`≤Ln+1

(
2`

Ln+1

)1−β

(1 + `−)
∑

2`′≤Ln

(
2`′

Ln+1

)β

(1 + `′−) ≤ κn νn

`
β
n

.

(4.93)

On the other hand, (recall `′− = 0, when Ln < 2`′ ≤ Ln+1):

Γ′
2

(4.86)

≤ κn νn sup
2`≤Ln+1

2`

Ln+1
(1 + `−)

∑

Ln<2`′≤Ln+1,p′

`−d
n

(
2`′

Ln

) d
2
+1 2β`′

2β`

≤ κn νn sup
2`≤Ln+1

(
2`

Ln+1

)1−β

(1 + `−)
∑

Ln<2`′≤Ln+1

(
2`′

Ln+1

)β

`−d
n

(
2`′

Ln

) d
2
+1 (

D̃n+1

2`′

)d

≤ κn νn sup
2`≤Ln+1

(
2`

Ln+1

)1−β

(1 + `−)
∑

Ln<2`′≤Ln+1

(
2`′

Ln+1

)β (
2`′

Ln

)− d
2
+1

≤ κn νn

`
β∧( d

2
−1)

n

.

(4.94)
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Combining (4.93), (4.94), we see that when L0 is large, for γ ∈ {0, 1}d, on Gσ,n,v,C,γ :

(4.95) ‖LC,γ‖n+1 ≤
κn νn

`
β∧( d

2
−1)

n

.

We now turn to the study of L′
C . Keeping in mind that |Λ′| ≤ c, cf. (4.53), using

similar estimates as in (4.66), (4.67), (4.71), (4.72), we see that for large L0, with (α, `, p),
(α′, `′, p′) as in (4.58), and for ω ∈ Gσ,n,v:

(4.96)
1

2d`

∣∣〈θα,`,p,L′
C θα′ ,`′,p′

〉∣∣ ≤





κn νn
2`

Ln+1

(
D∗

n

Ln+1

)d( 2`′

Ln

)d

, for 2`′ ≤ Ln ,

κn νn
2`

Ln+1

(
D∗

n

Ln+1

)d 2`′

Ln
, for Ln < 2`′ ≤ Ln+1 .

By direct inspection in (4.85), (4.86), we see that the above right-hand side is bounded
by κn σn(`, `′). Hence the analogous bound as in (4.57), for L′

C , as well as (4.91) - (4.94),
now prove that when L0 is large, for ω ∈ Gσ,n,v:

(4.97) ‖L′
C‖n+1 ≤

κn νn

`
β∧( d

2
−1)

n

.

Collecting (4.90), (4.95), (4.97), we have completed the proof of (4.46).

We continue with the analysis of LB. In analogy with (4.44), and with IB replacing
IC there, we write:

(4.98) LB = L1
B + L2

B ,

Lemma 4.6. When L0 is large, σ ∈ Σ, n′
0 ≤ n ≤ n0, v ∈ Ln+1 ZZd with (4.21), ω ∈ Ω:

(4.99) ‖L2
B‖n+1 ≤

κn

`n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.

Moreover if n is as in (4.18) with the notations (4.17) and above (4.19),

(4.100) lP
[
Gσ,n,v ∩

{
‖L1

B‖n+1 ≥
κn νn

`
(1−β)∧( d

2
−1)

n

}]
≤ e−κn0 .

Proof. We begin with the proof of (4.99). Note that with (1.49), (1.56), for g bounded
measurable,

(4.101) |χn+1,v PαnkL2
n
g|(n+1) ≤

c `n√
k
|g|∞, for 1 ≤ k ≤ `2n ,

hence with (4.39) we find

‖L2
B‖n+1 ≤

∑
k∈IB

c `n√
k

κn

`3n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)

≤ κn

`n

(
sup

x∈Sn,v

‖χn,x S̃
∗
n,σ‖n + e−κn

)
.

(4.102)
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This proves (4.99).

We continue with the proof of (4.100). In analogy to (4.48), and with IB replacing IC
there, we decompose L1

B into:

(4.103) L1
B =

∑
γ∈{0,1}d

LB,γ + L′
B ,

For γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′) satisfying (4.58), we introduce in full analogy with
(4.59), with IB replacing IC there, Mj, 0 ≤ j ≤ |Λγ|. With the definition (4.60), we
observe that for large L0, when

(4.104) 2` ≤ Ln ,

for y, y′ ∈ B(v, 20
√
dLn+1) ∩ Supp θα,`,p, ω ∈ Gσ,n,v, 1 ≤ j ≤ |Λj|, with the help of (1.56),

(4.61),

∑
k∈IB

|ψj,k(y) − ψj,k(y
′)| ≤

∑
k∈IB

c
D∗d

n

Ld
n

1

k
d+1
2

|y − y′|
Ln

exp
{
− cAj(y, y

′)2

k L2
n

}
κn νn

`n

(
2`′

Ln+1

)d

,
(4.105)

with

(4.106) Aj(y, y
′) = inf

{
|w − w̃|, w ∈ Bqj

, w̃ = λy + (1 − λ)y′, 0 ≤ λ ≤ 1
}
.

As a result of (4.65), under the above assumptions:

∑
k∈IB

|ψj,k(y) − ψj,k(y
′)| ≤ κn νn

`n

[(
Ln

Aj(y, y′)

)d−1

∧ 1
] |y − y′|

Ln
,(4.107)

and by an analogous calculation

∑
k∈IB

|ψj,k(y)| ≤ κn νn

`n

[(
Ln

Aj(y)

)d−2

∧ 1
]
, with Aj(y)

def
= d(y, Bqj

) .(4.108)

If we now turn to the case

(4.109) Ln < 2` ≤ Ln+1 ,

under the same conditions as stated above (4.105), we find

∑
k∈IB ,

√
kLn>2`

|ψj,k(y) − ψj,k(y
′)| ≤ κn νn

`n

(
2`′

Ln+1

)d ∣∣∣y − y′

Ln

∣∣∣

∑
2`<

√
kLn≤Ln+1

k−
(d+1)

2 exp
{
− cAj(y, y

′)2

k L2
n

}
.

(4.110)

Note that one has the following refinement of (4.65):

(4.111)
∑
v<k

k−ρ exp
{
− u

k

}
≤ c(ρ)

{
(u ∨ v)−(ρ−1) ∧ 1

}
, for u, v > 0, ρ > 1 ,
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that is obtained by considering the case u = 0, and using (4.65). Hence for large L0, when
(4.109) holds, for y, y′ ∈ B(v, 20

√
dLn+1) ∩ Supp θα,`,p, ω ∈ Gσ,n,v, 1 ≤ j ≤ |Λγ|:

∑
k∈IB,

√
kLn>2`

|ψj,k(y) − ψj,k(y
′)| ≤ κn νn

`n

(
2`′

Ln+1

)d |y − y′|
Ln

{(
Ln

2` ∨ Aj(y, y′)

)d−1

∧ 1
}

(4.112)

and in an analogous fashion:

(4.113)
∑

k∈IB ,
√

kLn>2`

|ψj,k(y)| ≤ κn νn

`n

(
2`′

Ln+1

)d {(
Ln

2` ∨Aj(y)

)d−2

∧ 1
}
.

On the other hand with (4.60), (4.51):

(4.114)

∑
k∈IB ,

√
kLn≤2`

1

2`d

∫

Suppθα,`,p

|ψj,k(y)| dy ≤ κn νn

`n

(
2`′

Ln+1

)d

∑
k∈IB ,

√
kLn≤2`

1

2`d

∫

Bqj

dz

∫

B(2`p,c2`)

dy
c

(k L2
n)d/2

exp
{
− c(z − y)2

k L2
n

}
≤

κn νn

`n

(
2`′

Ln+1

)d (
2`

Ln

)2 (
D∗

n

2`

)d

exp
{
− c

(
Aj(2

`p)

2`

)2}
.

Collecting our bounds, we thus see that when L0 is large, for γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′)
as in (4.58), ω ∈ Gσ,n,v, 1 ≤ j ≤ |Λγ|:

(4.115) |Mj −Mj−1| ≤ δ`,p,`′(j)

where for 2` ≤ Ln, 2`′ ≤ Ln+1, 1 ≤ j ≤ |Λγ|:

(4.116) δ`,p,`′(j) =
κn νn

`n

(
2`′

Ln+1

)d [
2`

Ln+1

{(
Ln

Aj,`,p

)d−2

∧ 1
}

+
2`

Ln

{(
Ln

Aj,`,p

)d−1

∧ 1
}]

,

with
Aj,`,p = inf{|w − w̃|, w ∈ Bqj

, w̃ ∈ B(2`p, c 2`)} ,

with c such that Supp θα(·) ⊆ B(0, c), for all α ∈ {0, 1}d, and we have made use of the
fact that since 2` ≤ Ln, α 6= 0, and in view of (A.12),

∫
θα,`,p(y)dy = 0.

On the other hand when Ln < 2` ≤ Ln+1, 2`′ ≤ Ln+1, 1 ≤ j ≤ |Λγ|:

(4.117)
δ`,p,`′(j) =

κn νn

`n

(
2`′

Ln+1

)d [
2`

Ln+1

(
Ln

2` ∨ Aj,`,p

)d−2

+
2`

Ln

(
Ln

2` ∨ Aj,`,p

)d−1

+
(
Ln

2`

)d−2

exp
{
− c

(
Aj,`,p

2`

)2}]
.

Arguing as above (4.75), we see that when L0 is large, for γ ∈ {0, 1}d, (α, `, p), (α′, `′, p′)
as in (4.58), for ω ∈ Ω, 1 ≤ j ≤ |Λγ|:

(4.118) |Mj −Mj−1| ≤ κn ν
−1
n δ`,p,`′(j) .
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Keeping the same notation l̃P and ∆j, 1 ≤ j ≤ |Λγ|, as in (4.76), (4.77), with the only
difference that δ`,p,`′(j) replaces δ`,`′(j) in (4.76), repeating the argument leading to (4.84),
we see that for large L0, under the same conditions as above (4.118)

(4.119) |∆j| ≤ L−1
n0
δ`,p,`′(j)

def
= δ̃`,p,`′(j), 1 ≤ j ≤ |Λγ| .

Keeping in mind the objective of deriving bounds that parallel (4.88), we now bound
(
∑

1≤j≤|Λγ | δ
2
`,p,`′(j))

1/2. To this end note first that for 2` ≤ Ln, p, `
′ compatible with

(4.58), cf. (4.116),

(4.120)

( ∑
1≤j≤|Λγ |

δ`,p,`′(j)
2
) 1

2 ≤

κn νn

`n

(
2`′

Ln+1

)d [
2`

Ln+1

( ∑
1≤j≤|Λγ |

(
Ln

Aj,`,p

)2(d−2)

∧ 1
) 1

2
+

(
2`

Ln

)( ∑
1≤j≤|Λγ |

(
Ln

Aj,`,p

)2(d−1)

∧ 1
) 1

2
]
.

Observe that with (4.54), and the notations below (4.116),

(4.121)

i)
∑

1≤j≤|Λγ |

(
Ln

Aj,`,p

)2(d−2)

∧ 1 ≤ κn `
2ν(d)
n , with ν(d) =

1

2
, when d = 3 ,

= 0, when d ≥ 4 ,

ii)
∑

1≤j≤|Λγ |

(
Ln

Aj,`,p

)2(d−1)

∧ 1 ≤ c

As a result we obtain that for 2` ≤ Ln, p, `
′ compatible with (4.58):

(4.122)
( ∑

1≤j≤|Λγ |
δ`,p,`′(j)

2
) 1

2 ≤ σn(`, `′)
def
=

κn νn

`n

(
2`′

Ln+1

)d 2`

Ln
.

To handle the case Ln < 2` ≤ Ln+1, observe that:

(4.123)

i)
∑

1≤j≤|Λγ |
exp

{
− c

(
Aj,`,p

2`

)2}
≤ c

(
2`

Ln

)d

ii)
∑

1≤j≤|Λγ |

(
Ln

2` ∨ Aj,`,p

)2(d−1)

≤ c
(
Ln

2`

)2(d−1)( 2`

D∗
n

)d

+ c
(
Ln

2`

)d−2

≤ c
(
Ln

2`

)d−2

iii)
∑

1≤j≤|Λγ |

(
Ln

2` ∨ Aj,`,p

)2(d−2)

≤ c
(
Ln

2`

)2(d−2)( 2`

D∗
n

)d

+
∑

c2`<iD∗
n≤c eDn+1

c i−(d−3)

≤ κn `
2ν(d)
n , with the notation of (4.121) .

Coming back to (4.117), we obtain for Ln < 2` ≤ Ln+1, p, `
′ compatible with (4.58):

( ∑
1≤j≤|Λγ |

δ`,p,`′(j)
2
) 1

2≤ κn νn

`n

(
2`′

Ln+1

)d [(
2`

Ln+1

)
`ν(d)
n +

2`

Ln

(
Ln

2`

) d
2
−1

+
(
Ln

2`

) d
2
−2]

≤ κn νn

`n

(
2`′

Ln+1

)d [(
2`

Ln+1

)
`ν(d)
n +

(
2`

Ln

)ν(d)] def
= σn(`, `′) .

(4.124)
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The same argument leading to (4.87), (4.88) shows that when L0 is large, `, `′ ≤ Jn+1,
γ ∈ {0, 1}d:

(4.125)
∑

1≤j≤|Λγ |
δ̃`,p,`′(j) ≤ 1

2
σn(`, `′) ,

and for u ≥ σn(`, `′),

(4.126) lP
[
|M|Λγ || ≥ u,Gσ,n,v

]
≤ 2 exp

{
− 1

32

(
u

σn(`, `′)

)2}
.

We can now introduce for γ ∈ {0, 1}d the event

Gσ,n,v,B,γ = Gσ,n,v ∩
{
for (α, `, p), (α′, `′, p′) as in (4.58) ,

1

2d`

∣∣〈θα,`,p,L1
B,γθα′,`′,p′

〉∣∣ ≤ σn(`, `′)(1 + `− + `′−) e(log log Ln)2
}
,

(4.127)

and find that when L0 is large, for γ ∈ {0, 1}d, similarly to (4.90),

(4.128) lP[Gσ,n,v\Gσ,n,v,B,γ ] ≤ e−κn0 .

Moreover on the event Gσ,n,v,B,γ , we have

(4.129) ‖L1
B,γ‖n+1 ≤ Γ

def
= c sup

α,`,p

∑
α′,`′,p′

2β`′

2β`
σn(`, `′)(1 + `− + `′−) e(log log Ln)2 ,

with (α, `, p), (α′, `′, p′) varying over the set described in (4.58). We now write:

(4.130) Γ ≤ Γ1 ∨ Γ2 ,

with Γ1 defined as Γ with the additional requirement 2` ≤ Ln, and Γ2 with the additional
requirement Ln < 2` ≤ Ln+1, instead. With (4.122), we find for large L0:

Γ1 ≤ κn νn

`n
sup

2`≤Ln

∑
α′,`′,p′

(
2`′

Ln+1

)d (
2`

Ln

)
(1 + `− + `′−)

2β`′

2β`

≤ κn νn

`n
sup

2`≤Ln

(
2`

Ln

)1−β

(1 + `−)
∑

2`′≤Ln+1

(1 + `′−)
(

2`′

Ln

)β

≤ κn νn

`
(1−β)
n

,

(4.131)

whereas with (4.124), we find, (recall `− = 0, when Ln < 2` ≤ Ln+1):

Γ2 ≤
κn νn

`n
sup

Ln<2`≤Ln+1

∑
2`′≤Ln+1

2β`′

2β`

[
2`

Ln+1
`
ν(d)
n +

(
2`

Ln

)ν(d)
]
(1 + `′−)

≤ κn νn

`n
sup

Ln<2`≤Ln+1

[
`ν(d)
n

(
2`

Ln+1

)1−β

+
(
Ln+1

2`

)β (
2`

Ln

)ν(d)]

≤ κn νn

`
1−(β∨ν(d))
n

=
κn νn

`
(1−β)∧( d

2
−1)

n

.

(4.132)

Coming back to (4.129), we see that when L0 is large, for γ ∈ {0, 1}d, on Gσ,n,v,B,γ , we
have

(4.133) ‖L1
B,γ‖n+1 ≤

κn νn

`
(1−β)∧( d

2
−1)

n

.
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We now turn to the study of L′
B. Keeping in mind that |Λ′| ≤ c, cf. (4.53), using similar

estimates as in (4.115), (4.116), (4.117), we see that for large L0, with (α, `, p), (α′, `′, p′)
as in (4.58), and for ω ∈ Gσ,n,v:

(4.134) 2−d`
∣∣〈θα,`,p,L′

B θα′,`′,p′
〉∣∣ ≤





κn νn

`n

( 2`′

Ln+1

)d 2`

Ln
, if 2` ≤ Ln ,

κn νn

`n

( 2`

Ln+1

)d( 2`

Ln+1

+
(Ln

2`

)d−2)
,

if Ln < 2` ≤ Ln+1.

By direct inspection, cf. (4.122), (4.124), we see that the right-hand side above is bounded
by κn σn(`, `′). Hence the analogous bound to (4.129) for L′

B, as well as (4.131), (4.132)
show that when L0 is large, for ω ∈ Gσ,n,v:

(4.135) ‖L′
B‖n+1 ≤

κn νn

`
(1−β)∧( d

2
−1)

n

.

Combining (4.128), (4.133), (4.135), we have proved (4.100).

Collecting Lemmas 4.2, 4.3, 4.5, 4.6, we see that we have proved Proposition 4.1.

Remark 4.7. As a result of Lemmas 4.2, 4.3, 4.5, 4.6, we see that with high probability on
Gσ,n,v, ‖L̃σ,n,v‖n+1 is smaller than κn νn by the crucial contraction factor `

−β/3∧(1−β)∧(d/2+1)
n

(= `
−β/3
n , with our choice β ∈ (0, 1

2
] in (1.13)). In the proof of Proposition 4.1, there is an

asymmetry in the role of k close to 0 and k close to `2n − 1 in the decomposition (4.22),
which stems from the use of Taylor’s formula to second order, cf. (4.38). In a loose sense,

if the S̃∗
n,σ in the definition of L̃σ,n,v in (4.16) had been centered under lP, we could have

avoided Taylor’s expansion, and chosen in (4.22), IA = {0}, IB = {k : 0 < k ≤ `2n/2},
IC = {k : `2n/2 < k < `2n − 1}, ID = {`2n − 1}. With the proper assumptions, the role of

`
−β/3∧(1−β)∧(d/2−1)
n would then have been replaced with `

−β∧(1−β)∧( d
2
−1)

n , displaying a higher
symmetry between the role of small k and k close to `2n − 1. Ultimately the asymmetry in

the proof results from the fact that we work with S̃n which compares R̃n to the Gaussian
kernel R0

n, rather than separately analyzing R̃n − lE[R̃n] and lE[R̃n] −R0
n. �

Our next objective, see the comments above (4.10), is to control ‖hn(S∗
n,σ − S̃∗

n,σ)‖n.
To this end we introduce the event, cf. (4.2):

G̃ = G ∩ ⋂
n′

0<n≤n0

{
ω ∈ Ω; Ln ZZd ∩ B̃n(ω)c ∩ (5Tn0+1) is contained in the

union of at most ˜̀
0 open balls with radius 3D̃n and

center in Ln ZZd
}
.

(4.136)

The same estimates as in (4.3), show that for large L0,

(4.137) lP[G̃c] ≤ (n0 − n′
0 + 1)(100(m0 + 2))−1 L−M0

n0+1 ≤
1

100
L−M0

n0+1 .

It is also convenient for σ ∈ Σ, ω ∈ Ω, to introduce the laws P σ
y,ω, y ∈ lRd, of the canonical

Markov chain on (lRd)lN, with transition kernel R∗
n′

0,σ, cf. (4.7). We denote with Eσ
y,ω the
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corresponding expectation and with Zk, k ≥ 0, the canonical process on (lRd)lN. So for
instance for bounded measurable f and n ∈ [n′

0, n0], y ∈ lRd, in view of (4.11),

R̃∗
n,σf(y) =

Eσ
y,ω

[ ∑
0≤m<kn

∏
0≤k<m

ψn,y(Zk)(1 − ψn,y(Zm)) f(Zm) +
∏

0≤k<kn

ψn,y(Zk) f(Zkn)
]
,

(4.138)

with kn = (Ln/Ln′
0
)2.

Lemma 4.8. When L0 is large, for σ ∈ Σ, n′
0 ≤ n ≤ n0, y ∈ {d(·, Supphn) ≤ 50

√
dLn},

x ∈ LnZZd ∩ {d(·, Supphn) ≤ 20
√
dLn}, ω ∈ G̃,

P σ
y,ω

[
sup

0≤k≤kn

|Zk − Z0 | ≥ 30˜̀
0 D̃n

]
≤ e−κn0 ,(4.139)

‖χn,x(S
∗
n,σ − S̃∗

n,σ)‖n ≤ e−κn0 ,(4.140)

and

‖χn,x S
∗
n,σ‖n ≤ c Lβ

n .(4.141)

Proof. We begin with the proof of (4.139). The case n = n′
0 is obvious since kn = 1, and

the steps of Z. have length at most D̃n′
0
, P σ

y,ω-a.s. cf. (4.7). Since ω ∈ G̃, we can find a

collection wi ∈ Ln ZZd, 1 ≤ i ≤ ˜̀
0, with B(wi, 3D̃n) ∩ 5Tn0+1 6= ∅, such that

(4.142) B̃n(ω) ⊇ ((5Tn0+1) ∩ Ln ZZd)\ ⋃
1≤i≤è

0

B(wi, 3D̃n) .

Let us write σ = (σ1, . . . , σè), where 0 ≤ ˜̀≤ ˜̀
0, and introduce the open set

U =
( ⋃

1≤i≤è
0

B(wi, 6D̃n)
)
∪

( ⋃
1≤i≤è

B(σi, 6D̃n)
)
.

Since P σ
y,ω-a.s., Z. has steps of length at most D̃n′

0
, and U is a union of at most 2˜̀

0

balls of radius 6D̃n, using a connectedness argument we see that P σ
y,ω-a.s., on the event⋂

0≤k≤kn
{Zk ∈ U}, one has sup0≤k≤kn

|Zk − Z0| ≤ 7 × 2˜̀
0 D̃n. Therefore P σ

y,ω-a.s., on the
event in (4.139), Z. exits U before times kn. If we now define:

(4.143) τ = inf{k ≥ 0; inf
z
d(Zk, z) ≥ 4D̃n}, (z runs over {w1, . . . , wè

0
, σ1, . . . , σ`})

we see that the probability in (4.139) is smaller than:

(4.144) Eσ
y,ω

[
τ < kn, P

σ
Zτ ,ω

[
sup

0≤k≤kn

|Zk − Z0| > D̃n

2

]]
,

where we have used the strong Markov property. With our choice of y, see also below (4.8),

we see that P σ
y,ω-a.s., on {τ < kn}, d∞(Zτ , (5Tn0+1)

c) ≥ L2
n+1 − c Ln − (Ln/Ln′

0
)2 D̃n′

0
≥

D̃n + 2D̃n′
0
, when L0 is large.
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So in view of (4.6), with the notation (1.18), we obtain that P σ
y,ω-a.s., on {τ < kn},

P σ
Zτ ,ω

[
sup

0≤k≤kn

|Zk − Z0| > D̃n

2

]
≤ PZτ ,ω

[
X∗

L2
n
>

D̃n

2

] (2.2),(4.142)

≤ e−κn .

Coming back to (4.144), we obtain (4.139).

We now prove (4.140). Once again the case n = n′
0 is immediate since R̃∗

n′
0,σ coincides

with R∗
n′

0,σ. We thus assume n′
0 < n ≤ n0, and choose f with |f |(n) ≤ 1, ω ∈ G̃. With

large L0, we see that, cf. (4.9), (4.138), for x as in (4.140), y ∈ lRd,

(4.145)

χn,x(y)(S
∗
n,σ − S̃∗

n,σ) f(y)
def
= χn,x(y) ∆n f(y), with

∆n f(y) = Eσ
y,ω

[
f(Zkn) − ∑

0≤m<kn

∏
0≤k<m

ψn,y(Zk)(1 − ψn,y(Zm)) f(Zm) −
∏

0≤k<kn

ψn,y(Zk) f(Zkn)
]
,

and hence by the choice of ψn,y, cf. (4.10),

(4.146) |χn,x(y)(S
∗
n,σ − S̃∗

n,σ) f(y)| ≤ 2χn,x(y)P
σ
y,ω

[
sup

0≤k≤kn

|Zk − Z0| ≥ D∗
n

] (4.139)

≤ e−κn0 .

Then for y, y′ in {d(·, Suppχn,x) ≤ Ln}, we see that when |y − y′| ≥ e−κn0 ,

(4.147) |χn,x(y)∆n f(y) − χn,x(y
′) ∆n f(y′)| ≤ e−κn0 ≤

∣∣∣y − y′

Ln

∣∣∣
β

e−κn0 .

We thus consider y, y′ in {d(·, Suppχn,x) ≤ Ln}, with

(4.148) |y − y′| ≤ e−κn0 ,

and write in analogy with (2.51):

(4.149) |∆n f(y) − ∆n f(y′)| ≤ a1 + a2, where

a1 =
∣∣∣Eσ

y′,ω

[ ∑
0≤m<kn

∏
0≤k<m

ψn,y′(Zk)(1 − ψn,y′(Zm)) f(Zm) +
∏

0≤k<kn

ψn,y′(Zk) f(Zkn)

− ∑
0≤m<kn

∏
0≤k<m

ψn,y(Zk)(1 − ψn,y(Zm)) f(Zm) − ∏
0≤k<kn

ψn,y(Zk) f(Zkn)
]∣∣∣

and with hopefully obvious notations

a2 =
∣∣∣(Eσ

y,ω−Eσ
y′,ω)

[
f(Zkn)− ∑

0≤m<kn

ψn,y(Zk)(1−ψn,y(Zm)) f(Zm)− ∏
0≤k<kn

ψn,y(Zk) f(Zkn)
]∣∣∣ .

In view of (4.10), |ψn,y(·) − ψn,y′(·)| ≤ |y − y′|, and we see that with (4.148) and (1.13),

(4.150) a1 ≤ (k2
n + kn) |y − y′| ≤ (k2

n + kn) e−κn0

∣∣∣y − y′

Ln

∣∣∣
β

≤ e−κn0

∣∣∣y − y′

Ln

∣∣∣
β

,

using (4.148), and (1.13). Then using the fact that, cf. (4.6), (4.7),

R∗
n′

0,σ = (1 − gσ) R̃0
n′

0
+ gσ R̃n′

0
,
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we can write

R∗
n′

0,σ = A+B, with A = (1 − gσ)R0
n′

0
+ gσ Rn′

0
, and

B = (1 − gσ) (R̃0
n′

0
− R0

n′
0
) + gσ(R̃n′

0
− Rn′

0
) .

(4.151)

With (1.60), (1.29), (2.46), we find

(4.152)

i) ‖A‖L∞→(n) ≤
(
Ln

Ln′
0

)β

‖A‖L∞→(n′
0) ≤ c Lβ

n, and

ii) ‖B‖n ≤
(
Ln

Ln′
0

)β

‖B‖n′
0
≤ e−κn0 .

Denoting with g(·) the function χLn(· − y), cf. (1.37), we have

(4.153) a2 = |R∗
n′

0,σ(g E
σ
·,ω[H])(y) −R∗

n′
0,σ(g E

σ
·,ω[H])(y′)| ,

where |H| ≤ 2 1{sup0≤k≤kn
|Zk−Z0|≥D∗

n/2}, and

Eσ
z,ω[H] = (R∗

n′
0,σ)kn−1 f(z) − ∑

0≤m<kn−1

(ψn,yR
∗
n′

0,σ)m(1 − ψn,y) f(z) − (ψn,yR
∗
n′

0,σ)kn−1f(z) .

Using (4.151) in (4.153), as well as (4.152) i), we thus find

a2 ≤
∣∣∣y − y′

Ln

∣∣∣
β

c Lβ
n sup

z∈B(y,2Ln)

P σ
z,ω

[
sup

0≤k≤kn

|Zk − Z0| ≥ D∗
n

2

]
+ a′2

(4.139)

≤
∣∣∣y − y′

Ln

∣∣∣
β

e−κn0 + a′2, where

a′2 = |B(gE·,ω[H])(y) −B(gE·,ω[H])(y′)| .

(4.154)

In view of (4.152) ii), (4.147) - (4.150), the claim (4.140) will follow once we show that

(4.155) |g E·,ω[H]|(n) ≤ c Lβ
n kn .

To this end observe that for m ≥ 1, with (4.151), using perturbation expansion

(4.156) (R∗
n′

0,σ)m = Bm +
∑

0≤m′<m

Bm′
A(R∗

n′
0,σ)

m−m′−1 ,

so that with (4.152)

|(R∗
n′

0,σ)
kn−1 f |(n) ≤ ‖B‖kn−1

n +
∑

0≤m′<kn−1

‖B‖m′

n c Lβ
n ≤ c Lβ

n .

Analogously, we see that with 0 ≤ m < kn − 1,

|(ψn,y R
∗
n′

0,σ)m(1 − ψn,y) f |(n) ≤ ‖ψn,y B‖m
n |1 − ψn,y|(n) +

∑
0≤m′<m

‖ψn,y B‖m′

n c Lβ
n

(4.10),(4.152)

≤ c Lβ
n, and

|(ψn,y R
∗
n′

0,σ)
kn−1 f |(n) ≤ c Lβ

n .
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The claim (4.155) follows, and this finishes the proof of (4.140).

Let us finally prove (4.141). For large L0, σ ∈ Σ, n′
0 ≤ n ≤ n0, ω ∈ G̃, and x as in

(4.141), as a result of (4.8), (4.9):

χn,x S
∗
n,σ = χn,x(R

∗
n′

0,σ)kn − χn,xR
0
n .

Using (4.156) and (4.152), the claim (4.141) immediately follows.

Keeping in mind the expansion (4.15), it is convenient to modify (4.16), and introduce
for σ ∈ Σ, n′

0 ≤ n ≤ n0, v ∈ Ln+1 ZZd the operator

(4.157) Lσ,n,v =
∑

0≤k<`2n

χn+1,v(R
0
n)k hn S

∗
n,σ(R

0
n)`2n−k−1 .

As an application of the previous lemma we have

Lemma 4.9. When L0 is large, for σ ∈ Σ, n′
0 ≤ n ≤ n0, v ∈ Ln+1 ZZd, ω ∈ G̃

(4.158) ‖Lσ,n,v − L̃σ,n,v‖n+1 ≤ e−κn0 .

Proof. We write, (recall that hn,v(·) = χDn+1(· − v) hn(·)),

(4.159)

Lσ,n,v − L̃σ,n,v = L1 + L2 + L3, with

L1 =
∑

0≤k<`2n

χn+1,v (R0
n)k (hn − hn,v)S

∗
n,σ(R

0
n)`2n−k−1

L2 =
∑

0≤k<`2n

χn+1,v (R0
n)k hn,v (S∗

n,σ − S̃∗
n,σ)(R

0
n)`2n−k−1

L3 =
∑

0≤k<`2n

χn+1,v (R0
n)k hn,v S̃

∗
n,σ(R

0
n)`2n−k−1(1 − χ̃n+1,v) .

Keeping in mind (4.140), (4.141), together with (1.55), (1.56), (1.49), (1.29), we see that

‖L1‖n ≤ `2n c e
−κn0 c Lβ

n ≤ e−κn0 , ‖L2‖n ≤ `2n c e
−κn0 ≤ e−κn0 .

Noting that hn,v S̃
∗
n,σ g = −hn,v R

0
n g, when g is supported in B(v, 3Dn+1)

c, with L0 large,
we also find

‖L3‖n ≤ `2n c L
β
n e

−κn0 ≤ e−κn0 .

Since we also have ‖Li‖n+1 ≤ `βn‖Li‖n, for i = 1, 2, 3, the claim (4.158) follows.

Proposition 4.10. When L0 is large, for n′
0 ≤ n ≤ n0, (4.18) is satisfied.

Proof. We use induction over n ∈ [n′
0, n0]. First observe that with the notation (4.5) and

in analogy with (4.3)

lP[G∅] ≥ 1 − c
(L2

n0+1

Ln′
0

)d

L−M0

n′
0

≥ 1 − c L
2d−M0(1+a)−(m0+2)

n0+1

(1.46)

≥ 1 − c L−98d
n0+1 .

Hence with (4.137), we find for large L0

(4.160) lP[G∅,n′
0
] ≥ 1 − L−97d

n0+1, with G∅,n′
0

def
= G∅ ∩ G̃ .
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We introduce the notation

(4.161) Sn = Ln ZZd ∩ {d(·, Supphn) ≤ 20
√
dLn}, for n′

0 ≤ n < n0 .

Note for later use that with the notation (4.19), for n′
0 ≤ n < n0,

(4.162) Sn+1 ⊆ {v ∈ Ln+1 ZZd; Sn,v 6= ∅} = {v ∈ Ln+1 ZZd; hn,v ≡/ 0} .

Further when L0 is large, for all ω ∈ G∅,n′
0
, x ∈ Sn′

0
, with (4.7)

(4.163) ‖χn′
0,x S̃

∗
n′

0,∅‖n′
0

= ‖χn′
0,x S̃n′

0
‖n′

0

(2.2)

≤ νn′
0
,

and for all y ∈ [0, Ln′
0
]d, using (2.2), (2.4)

(4.164)
∣∣∣
d̃∗n′

0,∅

Ln′
0

(y, ω)
∣∣∣
(

=
∣∣∣ d̃n′

0

Ln′
0

(y, ω)
∣∣∣
)
≤ νn′

0
,

∣∣∣
γ̃∗n′

0,∅

L2
n′

0

(y, ω)
∣∣∣
(

=
∣∣∣ γ̃n′

0

L2
n′

0

(y, ω)
∣∣∣
)
≤ νn′

0
.

Let us assume that for n1 with n′
0 ≤ n1 < n0, we have a decreasing sequence of events

G∅,n, n′
0 ≤ n ≤ n1, such that for n′

0 ≤ n < n1

(4.165) lP[G∅,n\G∅,n+1] ≤ e−κn0 ,

and for ω ∈ G∅,n, x ∈ Sn, (4.163), (4.164) hold with n in place of n′
0 (the expressions in

parenthesis in (4.164) being now disregarded). With (4.160), we see that (4.18) is satisfied
with n = n1, and with (4.20) of Proposition 4.1, where we have set G∅,n1,v ≡ G∅,n1, we
obtain since Sn1,v ⊆ Sn1 , for all v ∈ Ln+1 ZZd,

lP
[
G∅,n1

∩
{

sup
v∈Ln1+1ZZ

d:Sn1,v 6=∅
‖L̃∅,n1,v‖n1+1 >

κn1 νn1

`
β/3
n1

}]
≤

c
(L2

n0+1

Ln1+1

)d

e−κn0 ≤ e−κn0 .

(4.166)

We then define

(4.167) G∅,n1+1 = G∅,n1 ∩
{

sup
v∈Ln1+1ZZ

d:Sn1,v 6=∅
‖L̃∅,n1,v‖n1+1 ≤

κn1 νn1

`
β/3
n1

}
,

and note from the above that (4.165) is true for n = n1. Then with Lemma 4.9, since

G∅,n1+1 ⊆ G̃, we have for ω ∈ G∅,n1+1

(4.168) sup
v∈Ln1+1ZZ

d:Sn1,v 6=∅
‖L∅,n1,v‖n1+1 ≤ 2

κn1 νn1

`
β/3
n1

.

Coming back to (4.15), we see that for ω ∈ G∅,n1+1, v ∈ Sn1+1:

(4.169)

‖χn1+1,v S
∗
n1+1,∅‖n1+1 ≤ ‖L∅,n1,v‖n1+1+

‖ ∑
k0+···+km+m=`2n1

ki≥0,m≥2

χn1+1,v(R
0
n1

)k0 hn1 S
∗
n1,∅(R

0
n1

)k1 . . . hn1 S
∗
n1,∅(R

0
n1

)km‖n1+1 +

c ‖Pαn1L2
n1+1

− Pαn1+1L2
n1+1

‖n1+1
def
= a1 + a2 + a3 .
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With (4.162), from (4.168) we find

(4.170) a1 ≤ κn1 νn1 `
−β/3
n1

.

Then with (4.163), with n1 in place of n′
0, (A.3) of the Appendix, and (4.140), we see that

for ω ∈ G∅,n1+1 ⊆ G∅,n1
:

(4.171) ‖hn1 S
∗
n1,∅‖n1 ≤ ‖hn1 S̃

∗
n1,∅‖n1 + e−κn0 ≤ c νn1 + e−κn0 ≤ c3 νn1 .

As a result with the help of (1.55) and the fact that ‖ · ‖n+1 ≤ `βn ‖ · ‖n, we obtain

(4.172)

a2 ≤ c `βn1

∑
k0+···+km+m=`2n1

ki≥0,m≥2

(c3 νn1)
m = c `βn1

[(1 + c3 νn1)
`2n1 − 1 − `2n1

c3 νn1]

≤ c `β+4
n1

ν2
n1

exp{c νn1 `
2
n1
}

(1.14),(1.40),(4.17)

≤ c L5a
n1
ν2

n1
,

where we used the inequalities (1 + u)` ≤ eu` and ev − 1 − v ≤ v2ev, for `, u, v positive
numbers. To bound a3, we use the heat equation satisfied by the Brownian semigroup,
which implies that for f with |f |(n1+1) ≤ 1,

(4.173)

|Pαn1L2
n1+1

f − Pαn1+1L2
n1+1

f |(n1+1) =
∣∣∣
∫ αn1L2

n1+1

αn1+1L2
n1+1

1

2
∆Ps f ds

∣∣∣
(n1+1)

=
∣∣∣
∫ αn1+1L2

n1+1

αn1L2
n1+1

1

2
Ps/2 ∆Ps/2 f ds

∣∣∣
(n1+1)

(1.56),(1.49)i)

≤ c|αn1+1 − αn1|

(1.49)ii)

≤ c L
− 19

10
δ

n1

(1.14)

≤ L
− 18

10
δ

n1+1 .

We have thus shown that when L0 is large

(4.174) a3 ≤ c L
− 18

10
δ

n1+1 .

Collecting (4.170), (4.172), (4.174), we see that when L0 is large, for ω ∈ G∅,n1+1, v ∈
Sn1+1:

(4.175) ‖χn1+1,v S
∗
n1+1,∅‖n1+1 ≤ c

(
κn1 νn1 `

−β/3
n1

+ L5a
n1
ν2

n1
+ L

− 18
10

δ

n1+1

)
,

and thank to (4.140), a similar inequality is satisfied by χn1+1,v S̃
∗
n1+1,∅. If we now choose

v = 0, analogous controls as in the derivation of (2.4), using (4.14), and (1.49) i) with
n = n1 + 1 ≤ n0, and the remark below (4.11), show that

(4.176)
sup

y∈[0,Ln1+1]d

(∣∣∣ d̃
∗
n1+1

Ln1+1
(y, ω)

∣∣∣ +
∣∣∣ γ̃

∗
n1+1

L2
n1+1

(y, ω)
∣∣∣
)
≤

κn1+1

(
κn1 νn1 `

−β/3
n1 + L5a

n1
ν2

n1
+ L

− 18
10

δ

n1+1

)
≤ νn1+1 ,

using (1.14), (1.40), (4.17) in the last step.

We thus see that (4.163), (4.164) are satisfied for ω ∈ G∅,n1+1, v ∈ Sn1+1, with n1 + 1,
in place of n′

0. This completes the induction step, and with (4.160), this is more than
enough to prove the claim of Proposition 4.10.
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We are now ready to state and prove the main result of this section. We recall the
notations introduced in (4.4), (4.5), (4.136).

Proposition 4.11. When L0 is large, for each σ ∈ Σ there is an event Gσ,n0+1 ⊆ Gσ ∩ G̃,
such that:

sup
σ∈Σ

lP[(Gσ ∩ G̃)\Gσ,n0+1] ≤ e−κn0 ,(4.177)

lP
[( ⋃

σ∈Σ

Gσ,n0+1

)c]
≤ 1

20
L−M0

n0+1 ,(4.178)

and on Gσ,n0+1, for all n′
0 ≤ n ≤ n0, (cf. (4.17), (4.162) for the notation),

(4.179) sup
x∈Sn

(
‖χn,x S

∗
n,σ‖n ∨ ‖χn,x S̃

∗
n,σ‖n

)
≤ νn ,

and

(4.180) ‖χn0+1,0(R
∗
n0+1,σ − (R0

n0
)`2n0 )‖n0+1 ≤ νn0+1 .

Proof. The argument is similar to the proof of Proposition 4.10. We define for σ ∈ Σ,

(4.181) Gσ,n′
0

= Gσ ∩ G̃ ,

(this is consistent with (4.160), when σ = ∅). We then observe with (4.7), (4.11), that
when L0 is large, for σ ∈ Σ, ω ∈ Gσ,n′

0
, v ∈ Sn′

0
:

‖χn′
0,x S̃

∗
n′

0,σ‖n′
0

= ‖χn′
0,x S

∗
n′

0,σ‖n0 = ‖χn′
0,x(gσ S̃n′

0
+ (1 − gσ)(R̃

0
n′

0
− R0

n′
0
))‖n′

0

(4.6),(2.2),(2.46)

≤ c (L−δ
n′

0
+ e−κn0 )

(4.17)

≤ νn′
0
.

(4.182)

Let us now assume that for n1 with n′
0 ≤ n1 < n0, and σ ∈ Σ, we have a decreasing

sequence of events, n′
0 ≤ n ≤ n0, such that

(4.183) sup
σ∈Σ

lP[Gσ,n\Gσ,n+1] ≤ e−κn0 , for n′
0 ≤ n < n1 ,

and such that on Gσ,n:

(4.184) sup
x∈Sn

(‖χn,x S
∗
n,σ‖n ∨ ‖χn,x S̃

∗
n,σ‖n) ≤ νn .

Then with Proposition 4.1, for σ ∈ Σ,

(4.185)

lP
[
Gσ,n1 ∩

{
sup

v∈Ln1+1ZZ
d:Sn1,v 6=∅

‖L̃σ,n1,v‖n1+1 >
κn νn1

`
β/3
n1

}]
≤

c
(
L2

n0+1

Ln1+1

)d

e−κn0 ≤ e−κn0 .

We then define for σ ∈ Σ, (this is consistent with (4.167)):

(4.186) Gσ,n1+1 = Gσ,n1 ∩
{

sup
v∈Ln1+1ZZd:Sn1,v 6=∅

‖L̃σ,n1,v‖n1+1 ≤
κn νn1

`
β/3
n1

}
,
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and see that (4.184) holds with n1 + 1 in place of n1. Moreover in a parallel fashion to
(4.169), for σ ∈ Σ, ω ∈ Gσ,n1+1, v ∈ Sn1+1,

(4.187) ‖χn1+1,v S
∗
n1+1,σ‖n1+1 ≤ a1 + a2 + a3 ,

where ai, 1 ≤ i ≤ 3, are just as in (4.169), with σ replacing ∅ in the expressions entering
a1, a2. The same reasoning (4.170) - (4.174) shows that when L0 is large, for σ ∈ Σ,
ω ∈ Gσ,n1+1, and v ∈ Sn1+1:

(4.188) ‖χn1+1,v S
∗
n1+1,σ‖n1+1 ≤ c

(
κn1 κn1 `

−β/3
n1

+ L5a
n1
ν2

n1
+ L

− 18
10

δ

n1+1

)
,

and that with (4.140) a similar inequality holds for χn1+1,v S̃
∗
n1+1,σ. This implies that

(4.184) is true for n = n1+1. This proves by induction (4.183) for n′
0 ≤ n < n0 and (4.184)

for n′
0 ≤ n ≤ n0. We can then define for σ ∈ Σ, Gσ,n0+1 via (4.186) with n0 in place of n1.

We then obtain (4.177), (4.180) by writing the analogue of (4.15) for R∗
n0+1 − (R0

n0
)`0n0 ,

i.e. without the bottom line of (4.15), (incidentally we recall that (1.50) remains to be
proved, cf. Proposition 5.7 below). The claim (4.178) is now a straightforward consequence
of (4.5), (4.137), (4.177). This concludes the proof of Proposition 4.11.

5 Repairing defects

We conclude the proof of Theorem 1.1 in this section. The main remaining task is to
propagate the part of (1.47) concerning Hölder-norm controls at level n0 + 1. In Section
4 we have performed surgery on the environment and removed defects occurring at level
n′

0 = n0−m0−1. We have shown that the kernels R∗
n,σ, n′

0 ≤ n ≤ n0 +1, σ ∈ Σ, cf. (4.7),
(4.8), describing the evolution at level n “after surgery”, were typically well-behaved
for Hölder-norms, when ω ∈ Gσ,n0+1, and that the complement of

⋃
σ∈Σ Gσ,n0+1, was

“negligible” for our purpose, cf. Proposition 4.11. We now have to show that on “most”
of Gσ,n0+1, R

∗
n0+1,σ and Rn0+1, the true object of our interest, are close in the Hölder-

norm sense. To this end we will in essence use the smoothing effect of the kernels “after
surgery” to repair defects, as well as (1.48) to prevent any trapping effect of the defects.
The main step comes with Proposition 5.1. We will also prove (1.50), cf. Proposition 5.7,
and thereby complete the proof of Theorem 1.1.

We first introduce some additional notations. We recall that Zk, k ≥ 0, denotes
the canonical process on (lRd)lN, and that the laws P σ

y,ω, for σ ∈ Σ, ω ∈ Ω, y ∈ lRd, with
corresponding expectation Eσ

y,ω, have been defined above (4.138). We let P e
y,ω stand for the

canonical law on (lRd)lN of the Markov chain starting at y ∈ lRd, with transition kernel
Rn′

0
. It describes the diffusion in the environment (whence the superscript e) ω ∈ Ω,

viewed at times k L2
n′

0
, k ≥ 0, originating from y. We let Ee

y,ω stand for the corresponding

expectation. When no confusion with (1.8) arises, we use the notation

(5.1) HC = inf{k ≥ 0, Zk ∈ C}, TC = inf{k ≥ 0, Zk /∈ C} .

Likewise we still denote with θk, k ≥ 0, the canonical shift on (lRd)lN. With the notation
of (1.44), we introduce the event

G =
{
ω ∈ Ω; Jn,x,Cn(x),γ = 0, for all n′

0 ≤ n ≤ n0 + 1, x ∈ Ln ZZd ∩ (5Tn0+1) ,

for all γ ∈ {1, . . . , 2d 5(d−1)}
}
.

(5.2)
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This is the place where we use the control on traps to make sure that G c has negligible
probability. With (1.48), for n ≤ n0 and Proposition 3.3 when n = n0 + 1, (we in fact
only need in these controls the case of A singleton and ux → 0) we see that when L0 is
large,

lP[G
c
] ≤ ∑

n′
0≤n≤n0+1

c
(L2

n0+1

Ln

)d

L−Mn
n

≤ c(m0 + 2)L
2d−(1+a)−(m0+2)M/2
n0+1

(1.14),(1.17)

≤
(1.46)

L−2M0
n0+1 .

(5.3)

With the notations of Proposition 4.11, (4.5), (4.136), we define for each σ ∈ Σ:

(5.4) Gσ,n0+1 = Gσ,n0+1 ∩G ⊆ Gσ ∩ G̃ ∩G .

When L0 is large with (4.178), (5.3), we find:

(5.5) lP
[( ⋃

σ∈Σ

Gσ,n0+1

)c]
≤ lP

[( ⋃
σ∈Σ

Gσ,n0+1

)c]
+ lP[G

c
] ≤ 1

10
L−M0

n0+1 .

The next proposition is an important step in our program of “defects repairs”. Some
elements are reminiscent of Sidoravicius-Sznitman [25], cf. below (2.33) of [25].

Proposition 5.1. When L0 is large, for σ ∈ Σ, ω ∈ Gσ,n0+1, f with |f |(n0+1) ≤ 1,

(5.6)

sup
|y|≤ eDn0+1

|Ee
y,ω[f(ZT )] − Eσ

y,ω[f(ZT )]| ≤ L
−(β+δ+a)
n0+1 , with

T =
(
Ln0+1

Ln′
0

)2

− 1
(4.138)

= kn0+1 − 1 .

Proof. We break the difference in (5.6) into three terms that will be separately bounded.

Recall from (4.4) that σ = (σ1, . . . , σè), where 0 ≤ ˜̀≤ ˜̀
0. We introduce

(5.7) Kσ =
è⋃

i=1

B(σi, 10D̃n′
0
), Uσ =

⋃̀
i=1

B
(
σi,

1

5˜̀
0

Ln′
0+2

)
,

and write for y ∈ B(0, D̃n0+1), (cf. (5.6)),

A1 = Ee
y,ω

[
f(ZT ), HKσ > T

]
− Eσ

y,ω

[
f(ZT ), HKσ > T

]
,

A2 = Ee
y,ω

[
f(ZT ),

T

2
< HKσ ≤ T

]
− Eσ

y,ω

[
f(ZT ),

T

2
< HKσ ≤ T

]
,

A3 = Ee
y,ω

[
f(ZT ), HKσ ≤ T

2

]
− Eσ

y,ω

[
f(ZT ), HKσ ≤ T

2

]
,

(5.8)

(incidentally note that A2 = A3 = 0, when σ = ∅). We thus have

(5.9) Ee
y,ω[f(ZT )] − Eσ

y,ω[f(ZT )] = A1 + A2 + A3 .

We first bound A1. Note that when L0 is large, for y ∈ B(0, D̃n0+1), σ ∈ Σ, ω ∈ Gσ,n0+1,

(5.10) P σ
y,ω-a.s., T < T 1

5
Tn0+1

,
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indeed, T ≤ (Ln0+1/Ln′
0
)2 < L2

n0+1/10D̃n′
0
, when L0 is large, see also (4.7). Coming back

to the diffusion process, we can write, cf. (4.7):

A1 = Ey,ω

[
f(XTL2

n′
0

), XkL2
n′
0

/∈ Kσ, for 0 ≤ k ≤ T
]

− Ey,ω

[
f(XVT

), XVk
/∈ Kσ, for 0 ≤ k ≤ T

]
,

(5.11)

where Vk, k ≥ 0, are the iterates of the stopping time L2
n′

0
∧ Tn′

0
on C(lR+, lR

d), cf. (1.19),

that is:

(5.12) V0 = 0, V1 = L2
n′

0
∧ Tn′

0
, and Vk+1 = V1 ◦ θVk

+ Vk, for k ≥ 1 ,

(here of course (θt)t≥0 stands for the canonical shift on C(lR+, lR
d)). With (5.10), (5.11),

we see that:

(5.13)

|A1| ≤ 2
∑

0≤k<T

Py,ω

[
Tn′

0
◦ θmL2

n′
0

> L2
n′

0
, for 0 ≤ m < k, Tn′

0
◦ θkL2

n′
0

≤ L2
n′

0
,

and XmL2
n′
0

∈ Tn0+1\Kσ, for 0 ≤ m ≤ k
]

(2.2),(4.5)

≤ 2T e
−κn′

0 ≤ e−κn0+1 .

We now bound A2, and by the remark following (5.8), we may and will assume that σ 6= ∅.
Note that:

(5.14) A2 ≤ P e
y,ω

[
T

2
< HKσ ≤ T

]
+ P σ

y,ω

[
T

2
< HKσ ≤ T

]
.

We can express both probabilities in the right member of (5.14) in terms of the diffusion
process in a similar fashion as in (5.11). Using analogous bounds we see that

(5.15)
∣∣∣P e

y,ω

[
T

2
< HKσ ≤ T

]
− P σ

y,ω

[
T

2
< HKσ ≤ T

]∣∣∣ ≤ e−κn0+1 .

Further since ω ∈ Gσ,n0+1 ⊆ G, see (5.4), it follows from (5.2), (1.44) with n = n0, and
the Markov property that for y as in (5.6),

(5.16) Py,ω

[
sup

0≤u≤v≤T
4

L2
n′
0

|Xv −Xu| < Ln0

2

]
≤ (1 − c1)

`2n0
/8 ≤ e−κn0+1 .

With a similar argument as in (3.68), one sees that on the complement of the event that

appears in the above probability, X. must have exited the open set
⋃è

i=1 B(σi,
Ln0

4è
0
) by

time T
4
L2

n′
0
. We hence find that

P σ
y,ω

[
T

2
< HKσ ≤ T

]
≤ Py,ω

[
XVm /∈ Kσ, for all 0 ≤ m ≤ T

2
, and XVk

∈ Kσ, for some

T

2
< k ≤ T, and sup

0≤u≤T
4

L2
n′
0

d(Xu, Kσ) ≥ Ln0

4˜̀
0

− 10D̃n′
0

]
+ e−κn0+1 .

Introducing the open set:

(5.17) U =
{
z ∈ lRd; d(z,Kσ) <

Ln0

4˜̀
0

− 11D̃n′
0

}
,
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we see with a similar argument as in (5.13), using (5.10), that

(5.18)

P σ
y,ω

[
T

2
< HKσ ≤ T

]
≤ P σ

y,ω

[
T

2
< HKσ ≤ T ∧ TTn0+1 , TU <

T

2

]
+ e−κn0+1

≤ sup
z∈Tn0+1\U

P σ
z,ω

[
HKσ < T ∧ TTn0+1

]
+ e−κn0+1 .

Coming back to (5.14), (5.15), we find

(5.19) A2 ≤ 2 sup
z∈Tn0+1\U

P σ
z,ω

[
HKσ < T ∧ TTn0+1

]
+ e−κn0+1 .

The next step is to bound the first expression in the right-hand side of (5.19). To this
end for w ∈ 2Tn0+1, we introduce the function:

(5.20) nw(z) =

{
n′

0, if D∗
n′

0+2 ≥ |z − w| ,
sup{n ∈ [n′

0, n0]; |z − w| > D∗
n+1}, else ,

and the stopping time (for Z.):

(5.21) τw =

{
1, when nw(Z0) = n′

0 ,

kn ∧ inf{k ≥ 0 : |Zk − Z0| ≥ D∗
nw(Z0)}, else ,

(recall kn = (Ln/Ln′
0
)2, cf. (4.138), and D∗

n is defined in (4.10)). We write below n(z) for
nw(z). We also introduce the function

(5.22) fw(z) =
∣∣∣ z − w

D∗
n0+1

∣∣∣
−γ

∧ 1, z ∈ lRd, with γ = d− 2 − 1

100
.

Lemma 5.2. When L0 is large, for σ ∈ Σ, ω ∈ Gσ,n0+1, w ∈ 2Tn0+1, z ∈ (2Tn0+1) ∩
B(w,L

(1+δ/2)
n0 ), (cf. (1.40) for the definition of δ), we have

(5.23) Eσ
z,w[fw(Zτw)] ≤ fw(z) .

Proof. When |z − w| ≤ D∗
n0+1, (5.23) is immediate. We thus assume that

(5.24) z0
def
= z − w satisfies |z0| > D∗

n0+1, and z ∈ (2Tn0+1) ∩ B(w,L
(1+ δ

2
)

n0 ) .

Consider x ∈ lRd, such that |x| ≤ 1
2
|z0|. Writing ẑ0 = z0

|z0| , we have

(5.25)

|z0 + x|−γ = |z0|−γ
∣∣∣ẑ0 +

x

|z0|

∣∣∣
−γ

= |z0|−γ
(
1 + 2ẑ0 · x

|z0|
+

|x|2
|z0|2

)− γ
2

= |z0|−γ
(
1 − γ

2
(2ẑ0 ·

x

|z0|
+

|x|2
|z0|2

)
+

1

2
(γ2 + 2γ)

(
ẑ0 · x
|z0|

)2

+ r(z0, x)
)
,

with |r(z0, x)| ≤ c
( |x|
|z0|

)3

,

after the application of Taylor’s formula to second order in the neighborhood of 0, to the
function (1+u)−γ/2, u ∈ (−1, 1). Coming back to (5.21), with (5.24) in force, we see that

(5.26)
Eσ

z,ω[fw(Zτw)] ≤ fw(z)
(
1 − γ

|z0|
ẑ0 · Eσ

z,ω [Zτw − Z0] − γ

2|z0|2
Eσ

z,ω [|Zτw − Z0|2]

+
1

2

(γ2 + 2γ)

|z0|2
Eσ

z,ω[{ẑ0 · (Zτw − Z0)}2] + c
(D∗

n(z)

|z0|

)3)
.
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Comparing the law of Zτw under P σ
z,ω with R̃∗

n(z),σ(z, ·), cf. (4.138), with (4.139), and

ω ∈ Gσ,n0+1, we see that when L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1, w, z ∈ 2Tn0+1, with (5.24):

(5.27)

∣∣Eσ
z,ω[Zτw − Z0] − d̃∗n(z),σ(z, ω)

∣∣ ≤ e−κn0 ,
∣∣Eσ

z,ω[(Zτw − Z0)i (Zτω − Z0)j] − αn(z) δij L
2
n(z) − (γ̃∗n(z),σ)i,j(z, ω)

∣∣ ≤ e−κn0 ,

for 1 ≤ i, j ≤ d, with the notation of (4.14). Using (4.179), (1.49), and once again an
analogous calculation as in Lemma 2.1, we see that under the same conditions as in (5.27)

(5.28) |d̃∗n(z),σ(z, ω)| ≤ κn0 Ln(z) νn(z), |γ̃∗n(z),σ(z, ω)| ≤ κn0 L
2
n(z) νn(z) .

As a result we obtain, (recall γ + 2 − d = − 1
100

):

(γ + 2)Eσ
z,ω

[
{ẑ0 · (Zτw − Z0)}2

]
− Eσ

z,ω

[
|Zτw − Z0|2

]
≤ − 1

100
αn(z) L

2
n(z) + κn0 L

2
n(z) νn(z) .

Therefore for large L0, σ ∈ Σ, ω ∈ Gσ,n0+1, w, z ∈ 2Tn0+1, with (5.24), we find

(5.29)

Eσ
y,ω[fw(Zτw)] ≤

fw(z)
[
1 +

κn0

|z0|
Ln(z) νn(z) − γ

2|z0|2
L2

n(z)

(
αn(z)

100
− κn0 νn(z)

)
+ c

(D∗
n(z)

|z0|

)3]

(5.24),(5.20)

≤ fw(z)
[
1 +

Ln(z)

|z0|

(
κn0 νn(z) −

c Ln(z)

|z0|

)]
≤ fw(z) ,

using (5.26), (5.28), and (4.17). The claim (5.23) now follows.

Coming back to (5.19), (5.7), we see that

A2 ≤ 2˜̀
0 sup

1≤i≤è
sup

z∈Tn0+1:|z−σi|≥
Ln0
4è

0
− eDn′

0

P σ
z,ω[HB(σi,10 eDn′

0
) < T ∧ TTn0+1 ] + e−κn0+1

≤ 2˜̀
0 sup

1≤i≤è
sup

z∈Tn0+1:
Ln0
4è

0
− eDn′

0
≤|z−σi|≤

Ln0
4è

0

P σ
z,ω[HB(σi,10 eDn′

0
) < T ∧ TTn0+1 ] + e−κn0+1

(5.30)

using the strong Markov property in the last step.

With (4.139), n = n0, and the Markov property, we observe that for large L0, σ ∈
Σ, ω ∈ Gσ,n0+1, z ∈ Tn0+1,

(5.31) P σ
z,ω

[
sup

0≤k≤T
|Zk − Z0| > `2n0

30˜̀
0 D̃n0

]
≤ e−κn0+1 .

As a result when z ∈ Tn0+1 is such that for some 1 ≤ i ≤ `,
Ln0

4è
0
− D̃n′

0
≤ |z − σi| ≤ Ln0

4è
0
,

with (1.14), (1.40), we find

(5.32) P σ
z,ω

[
HB(σi,10 eDn′

0
) < T ∧ TTn0+1 ] ≤ P σ

z,ω[HB(σi ,10 eDn′
0
) < T

B(σi,L
(1+δ/2)
n0

)
] + e−κn0+1 .

We can then introduce τ k
σi
, k ≥ 0, the iterates of the stopping time τσi

, cf. (5.21) with
w = σi.

(5.33) τ 0
σi

= 0, τ 1
σi

= τσi
, τk+1

σi
= τσi

◦ θτk
σi

+ τ k
σi
, for k ≥ 1 ,
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as well as

(5.34) N = inf
{
k ≥ 0; Zτk

σi
∈ B(σi, 10D̃n′

0
) ∪B(σi, L

(1+δ/2)
n0

)c
}
.

Using induction over k, the strong Markov property and (5.23), we see that

(5.35) Eσ
z,ω[fσi

(ZτN∧k
σi

)] is a decreasing function of k ≥ 0 .

Further observe that for z as above (5.32), P σ
z,ω-a.s., on the event {HB(σi,10 eDn′

0
) <

T
B(σi ,L

(1+δ/2)
n0

)
}, it holds that ZτN

σi
∈ B(σi, 10D̃n′

0
), as follows from (5.21), (5.33), (5.34).

Hence with Fatou’s lemma, we find

(5.36) P σ
z,ω

[
HB(σi,10 eDn′

0
) < T

B(σi ,L
(1+δ/2)
n0

)
] ≤ Eσ

z,ω[fσi
(ZτN

σi
), N <∞

]
≤ fσi

(z) .

The above inequality together with (5.22), (5.30), shows that when L0 is large,

(5.37)
A2 ≤ κn0+1

(
Ln0

Ln′
0+1

)−(d−2− 1
100

)

+ e−κn0+1

(4.1)

≤ κn0+1 L
− 99

100
((1+a)−1−(1+a)−(m0+1))

n0+1

(1.14),(1.17)

≤ L
− 8

10
n0+1 .

We now bound A3. As in the case of A2, we only need to consider the case σ 6= ∅, see below
(5.8). We first introduce some notations. We consider the functions, (with ω ∈ Gσ,n0+1,
and f as in (5.9)):

(5.38) F e(k, z) = Ee
z,ω[f(ZT−k)], F

σ(k, z) = Eσ
z,ω[f(ZT−k)], z ∈ lRd, 0 ≤ k ≤ T .

We also introduce the probability kernels:

(5.39)
QeG(k, z) = Ee

z,ω

[
G((k + TUσ ∧ t0) ∧ T, ZTUσ∧t0∧(T−k))

]
, 0 ≤ k ≤ T, z ∈ lRd ,

Qσ G(k, z) = Eσ
z,ω

[
G((k + TUσ ∧ t0) ∧ T, ZTUσ∧t0∧(T−k))

]
, 0 ≤ k ≤ T, z ∈ lRd ,

with G bounded measurable on {0, . . . , T} × lRd, Uσ as in (5.7), and

(5.40) t0 = kn′
0+3

(4.138)
= (Ln′

0+3/Ln′
0
)2 .

Loosely speaking, these kernels describe for the Markov chain in the true environment or
in the environment after surgery how the process initiated at time k ≤ T , and stopped
at the deterministic time T ∧ (k+ t0) quits Uσ. We also introduce sub-probability kernels
describing returns to Kσ prior to T or exit from 3

4
Tn0+1:

ReG(k, z) = Ee
z,ω

[
G((k +HKσ) ∧ T, ZHKσ∧(T−k)), HKσ < (T − k) ∧ T 3

4
Tn0+1

]

Rσ G(k, z) = Eσ
z,ω

[
G((k +HKσ) ∧ T, ZHKσ∧(T−k)), HKσ < (T − k) ∧ T 3

4
Tn0+1

]
,

(5.41)

with 0 ≤ k ≤ T , z ∈ lRd, and G as below (5.39).
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Coming back to the definition of A3 in (5.8), we see using the strong Markov property
at time HKσ , analogous considerations as in the control of A1 and (5.10), that for large

L0, σ ∈ Σ, ω ∈ Gσ,n0+1, y ∈ B(0, D̃n0+1):

|A3 − A′
3| ≤ e−κn0+1 , with

A′
3

def
= Eσ

y,ω

[
HKσ ≤ T

2
∧ T 1

5
Tn0+1

, F e(HKσ , ZHKσ
) − F σ(HKσ , ZHKσ

)
]
.

(5.42)

Applying the strong Markov property, we see that for 0 ≤ k ≤ T, z ∈ lRd:

F e(k, z) − F σ(k, z) = Qe F e(k, z) −Qσ F σ(k, z)

= Qe(F e − F σ)(k, z) + (Qe −Qσ)F σ(k, z) .
(5.43)

The next lemma will provide an analogue of (4.139) for the Markov chain in the true
environment (i.e. under P e

z,ω).

Lemma 5.3. When L0 is large, for σ ∈ Σ, ω ∈ Gσ,n0+1, z ∈ 3Tn0+1, n
′
0 ≤ n ≤ n0:

(5.44) P e
z,ω

[
sup

0≤k≤kn

|Zk − Z0| ≥ 30˜̀
0 D̃n

]
≤ e−κn0+1 .

with kn
(4.138)

= (Ln/Ln′
0
)2, and ˜̀

0 as below (4.2).

Proof. The argument is similar to the proof of (4.139). The probability in (5.44) coincides
with

(5.45) Pz,ω

[
sup

0≤k≤kn

|XkL2
n′
0

−X0| ≥ 30˜̀
0 D̃n

]
.

On the event inside the above probability, X. exits the open set U defined below (4.142):

U =
( ⋃

1≤i≤è
0

B(wi, 6D̃n)
)
∪

( ⋃
1≤i≤è

B(σi, 6D̃n)
)
,

where the wi are omitted when n = n′
0. We denote with S the stopping time on C(lR+, lR

d):

S = inf
{
s ≥ 0, |Xs − x| ≥ 4D̃n, for all x ∈ {w1, . . . , wè

0
, σ1, . . . , σè}

}
,

where the wi are omitted when n = n′
0. From the discussion above, with the notation

(1.18), the expression in (5.45) is smaller than:

(5.46)
Ez,ω

[
S < L2

n, PXS ,ω[X∗
L2

n
≥ D̃n]

] (2.10)

≤
Ez,ω

[
S < L2

n ∧ T4Tn0+1, PXS ,ω[X∗
L2

n
≥ D̃n]

]
+ e−κn0+1 ≤ e−κn0+1 .

using the definition of U , and (2.2) in the last step. This proves the lemma.

We now work on the quantities that appear in the last line of (5.43). For 0 ≤ k ≤
T, z ∈ 1

2
Tn0+1, we can write:

F e(k, z) − F σ(k, z) =

Ee
z,ω

[
HKσ < (T − k) ∧ T 3

4
Tn0+1

, f(ZT−k)
]
− Eσ

z,ω

[
HKσ < (T − k) ∧ T 3

4
Tn0+1

, f(ZT−k)
]

+

Ee
z,ω

[
HKσ ≥ (T − k) ∧ T 3

4
Tn0+1

, f(ZT−k)
]
− Eσ

z,ω

[
HKσ ≥ (T − k) ∧ T 3

4
Tn0+1

, f(ZT−k)
]
.

69



Note that when L0 is large `2n0
D̃n0 <

1
8
L2

n0+1, so that with (4.139) and (5.44) when n = n0,
difference of the last two terms of the above equality is bounded in absolute value by

∣∣Ee
z,ω

[
HKσ ∧ T 3

4
Tn0+1

≥ T − k, f(ZT−k)] − Eσ
z,ω

[
HKσ ∧ T 3

4
Tn0+1

≥ T − k, f(ZT−k)
]∣∣

+ e−κn0+1 ≤ e−κn0+1 ,

using in the last step analogous estimates as for A1, cf. (5.13). Further the terms in the first
line of the right-hand side of the above equality are seen to coincide with Re F e(k, z) −
Rσ F σ(k, z), after application of the Markov property at time HKσ ∧ (T − k). Using
once again estimates as in the control of A1, or in the derivation of (5.42), we see that
Re F e(k, z) − Rσ F σ(k, z) differs at most by e−κn0+1 from Re(F e − F σ)(k, z). Collecting
our bounds, we see that when L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1, 0 ≤ k ≤ T , z ∈ 1

2
Tn0+1:

(5.47) |(F e − F σ)(k, z) − Re(F e − F σ)(k, z)| ≤ e−κn0+1 .

Letting y′ ∈ 1
4
Tn0+1 play the role of ZHσ in (5.42), and noting that in view of (5.39),

(5.44), when 0 ≤ k′ ≤ T , Qe((k′, y′), {0, . . . , T}× (1
2
Tn0+1)

c) ≤ e−κn0+1, we see with (5.43)
and (5.47) that for 0 ≤ k′ ≤ T :

(5.48) |(F e − F σ)(k′, y′) −QeRe(F e − F σ)(k′, y′) − (Qe −Qσ)F σ(k′, y′)| ≤ e−κn0+1 .

Thanks to (5.43) the expression under the absolute value coincides with

(5.49)
[
F e − F σ −QeReQe(F e − F σ) −

1∑
m=0

(QeRe)m(Qe −Qσ)F σ
]
(k′, y′) .

Using the strong Markov property, (5.39), (5.41), (2.1)

(5.50)

QeReQe((k′, y′), {0, . . . , T} × (1
2
Tn0+1)

c) ≤

P e
y′,ω

[
sup
k≤T

|Zk − Z0| ≥ 1

4
L2

n0+1

] (5.44)

≤ e−κn0+1 .

Hence using (5.47) to transform (5.49), we deduce from (5.48), (5.50) that

(5.51)
∣∣[F e − F σ − (QeRe)2 (F e − F σ) −

1∑
m=0

(QeRe)m(Qe −Qσ)F σ
]
(k′, y′)

∣∣ ≤ e−κn0+1 .

Note that (5.50) holds for (QeRe)m Qe, m ≥ 0, arbitrary in place of (QeRe)Qe, as follows
from the strong Markov property. We can then repeat the above manipulation finitely
many times and find that when L0 is large, for σ ∈ Σ, ω ∈ Gσ,n0+1, y

′ ∈ 1
4
Tn0+1,

0 ≤ k′ ≤ T :

∣∣∣
[
F e − F σ − (QeRe)m∗ (F e − F σ) −

1∑
0≤m<m∗

(QeRe)m(Qe −Qσ)F σ
]
(k′, y′)

∣∣∣

≤ e−κn0+1 ,

(5.52)

with in the notations of (1.14), (1.17):

(5.53) m∗ = [a−1(1 + a)m0+1] + 1 .

Keeping in mind that y′ plays the role of ZHKσ
and letting k′ play the role of HKσ in

(5.42), we are now going to bound [(QeRe)m∗1](k′, y′), for 0 ≤ k′ ≤ T
2
, y′ ∈ 1

4
Tn0+1.
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Lemma 5.4. When L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1, for 0 ≤ k′ ≤ T
2
, y′ ∈ 1

4
Tn0+1,

sup
0≤m≤m∗

(QeRe)m ((k′, y′),
[3

4
T, T ] × lRd) ≤ L

− 8
10

n0+1 ,(5.54)

(QeRe)m∗ ((k′, y′), [0, T ] × lRd) ≤ 2L
− 8

10
n0+1 .(5.55)

Proof. We first prove (5.54). When m = 0, the expression that appears in (5.54) vanishes,
and we can restrict to the case 1 ≤ m ≤ m∗. We can rewrite the quantity in (5.54) using
the strong Markov property, (5.39), (5.41), as the P e

y,ω-probability of a certain event
(loosely speaking expressing the occurrence of m successive possibly truncated departures
from Uσ and returns to Kσ prior to exit of 3

4
Tn0+1, with the m-th return taking place

sometimes during [3
4
T − k′, T − k′)). On this event since truncated departures have at

most a duration of t0, cf. (5.39), at least one of the return periods has a duration of at
least (

3

4
T − k′ −m∗ t0

)
/m∗ ≥ T

4m∗

− t0 .

As a result we have:

(5.56) (QeRe)m
(
(k′, y′),

[
3

4
T, T

]
× lRd

)
≤ m sup

z∈ 3
4
Tn0+1

P e
z,ω

[
T

4m∗

− t0 ≤ HKσ < T
]
.

The probability that appears in the right-hand side of (5.56) is similar to the first prob-

ability that appears in (5.14), (y ∈ B(0, D̃n0+1) is now replaced with z ∈ 3
4
Tn0+1, and T

2

with T
4m∗

− t0). The same estimates leading to (5.37) now yield for L0 large:

(5.57) m∗ sup
z∈ 3

4
Tn0+1

P e
z,ω

[
T

4m∗

− t0 ≤ HKσ < T
]
≤ L

− 8
10

n0+1 ,

thus proving (5.54).

We now turn to the proof of (5.55). With (5.54) and using the strong Markov property
in the second inequality, we find

(5.58)
(QeRe)m∗((k′, y′), [0, T ] × lRd) ≤ L

− 8
10

n0+1 + (QeRe)m∗((k′, y′),
(
0,

3T

4

)
× lRd

)

≤ L
− 8

10
n0+1 +

(
sup

z∈ 3
4
Tn0+1

Pz,ω

[
HKσ ◦ θTUσ∧t0 < TTn0+1 ∧ T

])m∗
.

The same argument employed in (5.16) - (5.18), shows that for z ∈ 3
4
Tn0+1, (recall t0

(5.40)
=

kn′
0+3):

(5.59) P e
z,ω

[
d(Zk, Kσ) ≥ Ln′

0+2

4˜̀
0

− 11D̃n′
0
, for some 0 ≤ k < t0

]
≥ 1 − e−κn0+1 ,

so that we find with (5.7)

(5.60)
Pz,ω

[
HKσ ◦ θTUσ∧t0 < TTn0+1 ∧ T

]
≤

e−κn0+1 + Ee
z,ω

[
TUσ < t0, P

e
ZTUσ∧t0

,ω
[HKσ < TTn0+1 ∧ T ]

]
.

But for z ∈ Tn0+1\Uσ playing the role of ZTUσ∧t0
,ω in the last term of (5.60), we find just

as for (5.15):

(5.61) P e
z,ω

[
HKσ < TTn0+1 ∧ T

]
≤ P σ

z,ω[HKσ < TTn0+1 ∧ T ] + e−κn0+1 .
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The first term on the right-hand side of (5.61) can be bounded in the same way as in
(5.30) - (5.37), to obtain with L0 large:

(5.62) P σ
z,ω[HKσ < TTn0+1 ∧ T ] ≤ `

(
c Ln′

0+2

D∗
n′

0+1

)− 99
100

+ e−κn0+1 ≤ `
− 9

10

n′
0+1 .

Coming back to (5.58), (5.60), we see that when L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1, 0 ≤ k′ ≤
T
2
, y′ ∈ 1

4
Tn0+1:

(5.63) (QeRσ)m∗
(
(k′, y′), [0, T ] × lRd)

)
≤ L

− 8
10

n0+1 +
(
`
− 9

10

n′
0+1 + e−κn0+1

)m∗
(1.15),(5.53)

≤ 2L
− 8

10
n0+1 .

This proves the claim (5.55).

We return to (5.52), and observe with the help of the above lemma that when L0 is
large, σ ∈ Σ, ω ∈ Gσn0+1, for 0 ≤ k′ ≤ T

2
, y′ ∈ 1

4
Tn0+1,

(5.64) |(F e − F σ)(k′, y′)| ≤ c
(
L
− 8

10
n0+1 + sup

k≤ 3
4

T,z∈Kσ∩( 3
4
Tn0+1)

|(Qe −Qσ)F σ(k, z)|
)
.

We now bound the last term of (5.64). We consider k ≤ 3
4
T , z ∈ Kσ ∩ (3

4
Tn0+1), as above

and introduce (recall t0
(5.40)
= kn′

0+3)

(5.65) k̃ = inf{m ∈ t0 ZZ + T ; m ≥ k + t0} .

With (5.39), and the Markov property in (5.38), we can write

Qe F σ(k, z) = Ee
z,ω

[
F σ(k + TUσ ∧ t0, ZTUσ∧t0

)
]

= Ee
z,ω

[
Eσ

ZTUσ∧t0
,ω

[F σ(k̃, Zek−k)]
]
,

(5.66)

where k = k + TUσ ∧ t0 is not part of the inner expectation. The same calculation for
Qσ F σ(k, z) and the strong Markov property yield:

(5.67) Qσ F σ(k, z) = Eσ
z,ω[F σ(k̃, Zek−k)] .

Using controls on the size of displacements of Z. in a time interval of length t0 or 2t0,
under P σ

z,ω or P e
z,ω, cf. (4.139), (5.44), we see that:

sup
k≤ 3

4
T,z∈Kσ∩( 3

4
Tn0+1)

|(Qe −Qσ)F σ(k, z)| ≤ e−κn0+1 + varF σ, where(5.68)

varF σ def
= sup

{
|F σ(k̃, z1) − F σ(k̃, z2)|, z1, z2 ∈ Tn0+1, |z1 − z2| ≤ D∗

n′
0+3 ,(5.69)

k̃ ∈ (t0 ZZ + T ) ∩
[
0,

4

5
T

]}
.

We will bound varF σ with the help of the smoothness properties resulting from (4.179)
and (5.38). We introduce a cut-off function h with values in [0, 1] such that with (2.1):

(5.70) h = 1 on 2Tn0+1, h = 0 on
(

5

2
Tn0+1

)c

, and |h|(n0+1) ≤ 1 +
c

Lβ
n0+1

.
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Lemma 5.5. For large L0, σ ∈ Σ, ω ∈ Gσ,n0+1, n
′
0 ≤ n ≤ n0,

(5.71) ‖hR∗
n,σ‖n0+1 = ‖h(R∗

n′
0,σ)kn‖n0+1 ≤ 1 + κn νn ,

with νn defined in (4.17), and kn
(4.138)

= L2
n/L

2
n′

0
.

Proof. The equality in (5.70) follows from (4.9), (5.69). Then with (4.9), (5.70), we can
write

(5.72) h(R∗
n′

0,σ)
kn = hR∗

n,σ

(4.8)
= hR0

n + hS∗
n,σ = hR0

n + h S̃∗
n,σ + h(S∗

n,σ − S̃∗
n,σ) .

From (1.29), (1.55), (5.70) we have

(5.73) ‖hR0
n‖n0+1 ≤ 1 +

c

Lβ
n0+1

,

and from (4.140) we deduce

(5.74) ‖h(S∗
n,σ − S̃∗

n,σ)‖n0+1 ≤
(
Ln0+1

Ln

)β

‖h(S∗
n,σ − S̃∗

n,σ)‖n ≤
(
Ln0+1

Ln

)β

e−κn0 ≤ e−κn0+1 .

If g is such that |g|(n0+1) = 1, and x ∈ Ln ZZd such that χn,x h 6= 0, we can find G̃ such
that:

(5.75) Supp G̃ ⊆ B(x, 4D∗
n), G̃ = g − g(x) on B(x, 3D∗

n), |G̃|(n) ≤ κn

(
Ln

Ln0+1

)β

.

We thus see, cf. above (4.12), that with (1.49)

(5.76)
|χn,x S̃

∗
n,σ g|(n) ≤ |χn,x S̃

∗
n,σ G̃|(n) + e−κn ≤ ‖χn,x S̃

∗
n,σ‖n κn

(
Ln

Ln0+1

)β

+ e−κn

(4.179)

≤ κn νn

(
Ln

Ln0+1

)β

.

As a consequence we see with (A.3) from the Appendix and (5.70) that

(5.77) |h S̃∗
n,σ g|(n0+1) ≤

(
Ln0+1

Ln

)β

|h S̃∗
n,σ g|(n) ≤ κn νn = κn νn |g|n0+1 .

Collecting (5.72), (5.73), (5.74), (5.77) we obtain (5.71).

We return to the task of bounding (5.69). With k̃ as in (5.69) we have T−k̃−kn0 ∈ t0 lN,
and hence we can write

(5.78) T − k̃ − kn0 =
∑

n′
0+3≤n≤n0

un kn, with un suitable integers in [0, `2n − 1) .

Then for z ∈ Tn0+1, f as in (5.6), (or (5.9)), we have:

F σ(k̃, z)
(5.38)
= (R∗

n′
0,σ)T−ek f(z) = (R∗

n′
0,σ)

kn0 (R∗
n′

0,σ)
un′

0+3kn′
0+3 . . . (R∗

n′
0,σ)unkn f(z) .
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Using (4.9) and (T − k̃) D̃n′
0
< 1

10
L2

n0+1, cf. below (5.10), we find

F σ(k̃, z) = R∗
n0,σ(hR∗

n′
0+3,σ)

un′
0+3 . . . (hR∗

n,σ)un . . . (hR∗
n0,σ)un0 f(z)

= R∗
n0,σ f̃(z) ,

(5.79)

where in view of (5.71), (5.78)

(5.80) |f̃ |(n0+1) ≤
∏

n′
0+3≤n≤n0

(1 + κn νn)`2n ≤ exp
{ ∑

n′
0+3≤n≤n0

κn νn `
2
n

} (1.15),(4.17)

≤ c .

So we see that for z1, z2 ∈ Tn0+1, with |z1 − z2| ≤ D∗
n′

0+3,

(5.81)

|F σ(k̃, z1) − F σ(k̃, z2)|
(5.79)

≤ |R0
n0
f̃(z1) − R0

n0
f̃(z2)| + |S∗

n0,σf̃(z1) − S∗
n0,σf̃(z2)|

(1.49),(1.56)

≤
(4.179)

cD∗
n′

0+3

Ln0

+ c
(D∗

n′
0+3

Ln0

)β

νn0

(4.17),(4.1)

≤

κn0

(
L
−( 1

1+a
−(1+a)−(m0−1))

n0+1 + L
−
(

β
1+a

+ β
4(a+1)

−β(1+a)−(m0−1)−( β
4
−δ)(1+a)−(m0+2)

)
n0+1

)

(1.14),(1.17)

≤
(1.40)

L
−(β+δ)
n0+1

(
L−2a

n0+1 + L
−
(

β
4(1+a)

−δ−a β
1+a

− β
100

− 1
100

( β
4
−δ)

)
n0+1

)
≤ c L

−(β+δ+2a)
n0+1 .

So we have shown that when L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1,

(5.82) varF σ ≤ c L
−(β+δ+2a)
n0+1 .

Collecting (5.42), (5.64), (5.68), we obtain since β + δ + 2a < 8
10

,

(5.83) A3 ≤ c L
−(β+δ+2a)
n0+1 .

Substituting in (5.9) the bounds (5.13), (5.37), (5.83) we now obtain (5.6) and this con-
cludes the proof of Proposition 5.1.

As an application of Proposition 4.11 and 5.1, we have

Proposition 5.6. When L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1,

(5.84) ‖χn0+1,0(Rn0+1 − (R0
n0

)`2n0 )‖n0+1 ≤ c L
−(δ+a)
n0+1 .

Proof. We have

(5.85)

‖χn0+1,0(Rn0+1 − (R0
n0

)`2n0 )‖n0+1 ≤
‖χn0+1,0(Rn0+1 −R∗

n0+1,σ)‖n0+1 + ‖χn0+1,0(R
∗
n0+1,σ − (R0

n0
)`2n0 )‖n0+1

(4.180)

≤
‖χn0+1,0(Rn0+1 −R∗

n0+1,σ)‖n0+1 + νn0+1 .

With the notation of (5.6), and with (4.9), we also find that:

(5.86)
χn0+1,0(Rn0+1 −R∗

n0+1,σ) = χn0+1,0(Rn′
0
(Rn′

0
)T − R∗

n′
0,σ(R∗

n′
0,σ)T ) =

χn0+1,0Rn′
0
((Rn′

0
)T − (R∗

n′
0,σ)T ) + χn0+1,0(Rn′

0
− R∗

n′
0,σ)(R∗

n′
0,σ)T .
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With (1.60) and (5.6), we see that

(5.87) ‖Rn′
0
1B(0, eDn0+1)((Rn′

0
)T − (R∗

n′
0,σ)T )‖n0+1 ≤

(Ln0+1

Ln′
0

)β

c Lβ
n′

0
L
−(β+δ+a)
n0+1 ≤ c L

−(δ+a)
n0+1 .

Also note that when |g|∞ ≤ 2 and g 1B(0, eDn0+1)
= 0, then with the notation (1.57),

χn0+1,0Rn′
0
g = χn0+1,0 P1,ω PL2

n′
0
−1,ω g, and from inequalities such as in (2.10), and from

(1.17), we see that |1B(0,Dn0+1) PL2
n′
0
−1,ω g|∞ ≤ e

−cLn′
0 , so that using (1.59) as in the proof

of (1.60), we find that |χn0+1,0Rn′
0
g|(n0+1) ≤ e

−cLn′
0 . Coming back to (5.87), we hence

obtain:

(5.88) ‖χn0+1,0Rn′
0
((Rn′

0
)T − (R∗

n′
0,σ)

T )‖n0+1 ≤ c L
−(δ+a)
n0+1 .

We now turn to the last term of (5.86) and observe that:

Rn′
0
− R∗

n′
0,σ

(4.7)
= (1 − gσ)(Rn′

0
− R̃0

n′
0
) + gσ(Rn′

0
− R̃n′

0
) .

With the same argument employed above (5.88), cf. (1.20), (1.37), for the notation, applied
to the last expression of the following identity

χn0+1,0 gσ(Rn′
0
− R̃n′

0
)(R∗

n′
0,σ)T = χn0+1,0 gσ(Rn′

0
− R̃n′

0
)χDn0+1(R

∗
n′

0,σ)
T +

χn0+1,0 gσ Rn′
0
(1 − χDn0+1)(R

∗
n′

0,σ)T def
= A1 + A2 ,

we see that ‖A2‖n0+1 is smaller than e
−cLn′

0 . Further just as in (5.80) we see that:

‖χDn0+1(R
∗
n′

0,σ)T‖n0+1 ≤ c

and together with (4.6), (2.2), (2.46) we obtain:

(5.89) ‖A1‖n0+1 ≤ ‖χn0+1,0 gσ (Sn′
0
− S̃n′

0
)χDn0+1(R

∗
n′

0,σ)T‖n0+1 + e−κn0+1 ≤ e−κn0+1 .

In view of the identity below (5.88), to control the rightmost expression in (5.86), it

remains to bound ‖χn0+1,0(1− gσ)(Rn′
0
− R̃0

n′
0
)(R∗

n′
0,σ)

T‖n0+1. To this end in analogy with

(1.20) we define the probability kernel

(5.90)
R∗

n′
0
(x, dy) = Px,ω[XL2

n′
0
∧T ∗

n′
0

∈ dy], x ∈ lRd, ω ∈ Ω, with

T ∗
n′

0
= inf{u ≥ 0, X∗

u ≥ D∗
n′

0
}, cf. (4.10), (1.18) for the notation .

As in Lemma 5.3, see in particular (5.46), we see that when L0 is large, σ ∈ Σ, ω ∈ Gσ,n0+1,

for y ∈ B(0, D̃n0+1),

Py,ω

[
X∗

L2
n′
0

≥ D∗
n′

0

2

]
≤ e

−κn′
0 .

Then with a slight variation on the proof of Proposition 2.5, for x ∈ Ln′
0
ZZd ∩B(0, Dn0+1),

(5.91) ‖χn′
0,x(R

∗
n′

0
− Rn′

0
)‖n′

0
≤ e

−κn′
0 .
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Employing a similar identity as above (5.89) in the first inequality, and (5.91) in the
second, we find

‖χn0+1,0(1 − gσ)(Rn′
0
− R̃0

n′
0
)(R∗

n′
0,σ)

T‖n0+1 ≤
‖χn0+1,0(1 − gσ)(R∗

n′
0
− R̃0

n′
0
)χDn0+1(R

∗
n′

0,σ)T‖n0+1 +

‖χn0+1,0(1 − gσ)Rn′
0
(1 − χDn0+1)(R

∗
n′

0,σ)T‖n0+1 + e
−κn′

0 ≤
‖χn0+1,0(1 − gσ)(R∗

n′
0
− R̃0

n′
0
)χDn0+1(R

∗
n′

0,σ)
T‖n0+1 + e

−κn′
0 ,

with the same argument as applied above (5.88). Note that thanks to (1.60), (4.6), (5.91),

‖(1 − gσ)χn′
0,x(R

∗
n′

0
− R̃0

n′
0
)‖n′

0
≤ c Lβ

n′
0
, with x as above (5.91). For f with |f |(n0+1) ≤ 1,

and writing Q = (1 − gσ)(R
∗
n′

0
− R̃0

n′
0
), we also find

(5.92) χn0+1,0QχDn0+1(R
∗
n′

0,σ)T f = χn0+1,0QχDn0+1(R
∗
n′

0,σ)kn0 f̃

where f̃ just as in (5.79), (5.80) satisfies

(5.93) |f̃ |(n0+1) ≤ c .

Further if x ∈ Ln′
0
ZZd is such that d(x, Suppχn0+1,0) ≤ 30

√
dLn′

0
, we can use a cut-off

function and construct H̃1, H̃2 supported in B(x, 3D∗
n′

0
) (where χDn0+1(·) = 1), such that

in B(x, 2D∗
n′

0
)

H̃1 coincides with R0
n0
f̃(·) − R0

n0
f̃(x) ,

H̃2 coincides with S∗
n0,σ f̃(·) − S∗

n0,σ f̃(x)
(4.8),(4.9)

= (R∗
n′

0,σ)kn0 f̃(·)

− (R∗
n′

0,σ)
kn0 f̃(x) − R0

n0
f̃(·) +R0

n0
f̃(x) ,

(5.94)

and so that they satisfy the bounds

(5.95) |H̃1|(n′
0)

(1.56)

≤ κn′
0

Ln′
0

Ln0

, |H̃2|(n′
0)

(4.179)

≤ κn′
0

(Ln′
0

Ln0

)β

νn0 .

As a result we obtain

|χn′
0,xQχDn0+1(R

∗
n′

0,σ)
T f |(n′

0)
≤ |χn′

0,xQH̃1|(n′
0) + |χn′

0,xQH̃2|(n′
0)

(2.2),(4.6)

≤
(5.95)

κn′
0
Lβ

n′
0

(Ln′
0

Ln0

+
(Ln′

0

Ln0

)β

νn0

)
.

We thus find

(5.96)

‖χn0+1,0(1 − gσ)(Rn′
0
− R̃n′

0
)(R∗

n′
0,σ)T‖n0+1 ≤

κn′
0
Lβ

n′
0

(Ln0+1

Ln0

)β ((Ln′
0

Ln0

)1−β

+ νn0

)
+ e

−κn′
0 ≤ L

−(δ+a)
n0+1 ,

using similar calculations as in the bottom lines of (5.81). Collecting (5.88), (5.89), (5.96),
we obtain (5.84).
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Before concluding the proof of Theorem 1.1, we yet have to control the difference
αn0+1 − αn0.

Proposition 5.7. Under the assumptions of Theorem 1.1, when L0 is large,

(5.97) |αn0+1 − αn0 | ≤ L
−(1+ 9

10
)δ

n0 .

Proof. Recall the definition of αn in (1.22). In analogy with (2.5) we consider the function,
cf. (1.37) for the notation:

(5.98) f(z) = χ2 eDn0+1
(z)

|z|2
L2

n0+1

, z ∈ lRd ,

so that |f |(n0+1) ≤ κn0+1, and:

(5.99) αn0+1
(1.22)
= lE[R̃n0+1 f(0)] .

We denote with Ω̃ the event

Ω̃ =
{
ω ∈ Ω; for |y| ≤ 30

√
dLn0+1, Py,ω[X∗

L2
n0+1

≥ v] ≤ exp
{
− v

Dn0+1

}
,

for all v ≥ Dn0+1

}
∩ {ω ∈ Ω; for all x ∈ Ln0 ZZd ∩ (5Tn0+1), x ∈ B̃n0(ω)}.

(5.100)

With (2.9) and (1.47), we see that when L0 is large,

(5.101) lP[Ω̃c] ≤ 1

10
L−M0

n0+1 + c
(L2

n0+1

Ln0

)d

L−M0
n0

(1.14),(1.15)

≤
(1.46)

L−10
n0+1 .

Then for ω ∈ Ω̃, we see that (cf. (1.37) for the notation):

|R̃n0+1 f(0) − (R0
n0

+ χ eDn0+1
Sn0)

`2n0 f(0)| ≤ |R̃n0+1 f(0) − Rn0+1 f(0)| +

|(R0
n0

+ Sn0)
`2n0 f(0) − (R0

n0
+ χ eDn0+1

Sn0)
`2n0 f(0)| ≤ e−κn0+1 +

∣∣∣
∑

0≤k<`2n0

(Rn0)
k (1 − χ eDn0+1

)Sn0 (R0
n0

+ χ eDn0+1
Sn0)

`2n0
−k−1 f(0)|

using (2.46) with n = n0 + 1, and perturbation expansion in the last step. Since R0
n0

+
χ eDn0+1

Sn0 = (1 − χ eDn0+1
)R0

n0
+ χ eDn0

Rn0 contracts the sup-norm, we see with (5.100),

that when L0 is large, for ω ∈ Ω̃:

(5.102) |R̃n0+1 f(0) − (R0
n0

+ χ eDn0+1
Sn0)

`2n0 f(0)| ≤ e−κn0+1 .

Using perturbation expansion as in (4.15) we find that for all ω ∈ Ω:

(5.103)

(R0
n0

+ χ eDn0+1
Sn0)

`2n0 f(0) − (R0
n0

)`2n0 f(0) =
∑

0≤k<`2n0

(R0
n0

)kχ eDn0+1
Sn0(R

0
n0

)`2n0
−k−1f(0) +

∑
k0+···+km+m=`2n0

ki≥0,m≥2

χ eDn0+1
Sn0(R

0
n0

)k1 . . . χ eDn0+1
Sn0(R

0
n0

)km f(0) .
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Further for ω ∈ Ω̃, ‖χ eDn0+1
Sn0‖

(2.2),(2.46)

≤ c L−δ
n0

, so that the term in the last line of (5.103)

is smaller in absolute value than:

∑
k0+···+km+m=`2n0

ki≥0,m≥2

(c L−δ
n0

)m κn0+1 = κn0+1

[
(1 + c L−δ

n0
)`2n0 − 1 − c `2n0

L−δ
n0

]

≤ κn0+1 L
−2δ+4a
n0

,
(5.104)

with c denoting the same constant in both members of the equality, and using a similar
argument as in (4.172).

Coming back to (5.102), (5.103), noting that (R0
n0

)`2n0f(0) = Pαn0 L2
n0+1

f(0), cf. (1.21),

(1.54), and that in view of (1.49) i) and (5.98) this quantity differs at most by e−κn0+1

from dαn0, we see that for ω ∈ Ω̃:

|R̃n0+1 f(0) − dαn0 −
∑

0≤k<`2n0

(R0
n0

)k χ eDn0+1
S̃n0(R

0
n0

)`2n0
−k−1 f(0)| ≤

κn0+1 L
−2δ+4a
n0

,
(5.105)

where we used (2.46) with n = n0.

Observe that for z ∈ B(0, 3
2
D̃n0+1), with (1.49) i) and (5.98),

sup
0≤k<`2n0

|(R0
n0

)`2n0
−k−1(f − g)(z)| ≤ e−κn0+1 , with g(·) =

| · |2
L2

n0+1

.

Hence with (5.105) we see that when L0 is large, for ω ∈ Ω̃:

∣∣∣R̃n0+1 f(0) − dαn0−
∑

0≤k<`2n0

∫
Pαn0kL2

n0
(0, dz)χ eDn0+1

(z)
(

2d̃n0(z, ω)

L2
n0+1

· z +
d∑

i=1

γ̃i,i
n0

(z, ω)

L2
n0+1

)∣∣∣ ≤

κn0+1 L
−2δ+4a
n0

.

(5.106)

In view of (1.24), (1.25), the lP-expectation of the sum in (5.106) vanishes. Hence with
(5.101) we see that for large L0:

∣∣∣lE
[
Ω̃,

∑
0≤k<`2n0

∫
Pαn0kL2

n0
(0, dz)χ eDn0+1

(z)
(

2d̃n0(z, ω)

L2
n0+1

· z +
d∑

i=1

γ̃i,i
n0

(z, ω)

L2
n0+1

)]∣∣∣ ≤

κn0 `
2
n0
L−10

n0+1 ≤ L−9
n0+1 .

(5.107)

So using (5.101), (5.105), (5.107), we see that when L0 is large

d|αn0+1 − αn0 | ≤ |lE[R̃n0+1 f(0) − dαn0, Ω̃
c]| + lE[R̃n0+1 f(0) − dαn0 , Ω̃]| ≤

κn0+1L
−2δ+4a
n0

(1.14),(1.40)

≤ L
−(1+ 9

10
)δ

n0 ,

and (5.97) is proved.
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We can now conclude the proof of Theorem 1.1. We have just shown (1.50) and there
remains to complete the proof of (1.47) with n = n0 + 1. With (5.84), we see that when
L0 is large, for σ ∈ Σ, ω ∈ Gσ,n0+1,

‖χn0+1,0 Sn0+1‖n0+1 ≤ c L
−(δ+a)
n0+1 + ‖Pαn0L2

n0+1
− Pαn0+1L2

n0+1
‖n0+1

≤ c L
−(δ+a)
n0+1 + c |αn0+1 − αn0|

(5.97)

≤ c L
−(δ+a)
n0+1 ,

using in the second inequality a similar bound as in (4.173). Further with (5.5) we find
lP[(

⋃
σ∈Σ Gσ,n0+1)

c] ≤ 1
10
L−M0

n0+1. These bounds together with (2.9) and (2.46) show that

lP[0 /∈ Bn0+1(ω)] ≤
(

1

10
+

1

10

)
L−M0

n0+1 ≤ L−M0
n0+1 .

This concludes the proof of (1.47) for n = n0 + 1, and hence of Theorem 1.1. �

6 Invariance principle, transience and homogeniza-

tion

In this section as mentioned in the Introduction, we apply Theorem 1.1 and prove an
invariance principle and transience for isotropic diffusions in random environment that are
small perturbations of Brownian motion, cf. Theorem 6.3. We also provide an application
to homogenization, cf. Theorem 6.4. We begin with a lemma that is helpful when applying
Theorem 1.1.

Lemma 6.1. When L0 is large, for ω ∈ Ω, 0 ≤ n ≤ m0 + 1,

(6.1) ‖χn,0(P1,ω − P1)PL2
n−1‖n ≤ 1

10
L−δ

n ,

cf. (1.17), (1.38), (1.40), (1.54), (1.57) for the notations.

Proof. We recall the convention L−1 = 1, see below (1.15), and extend using this conven-
tion the definitions | · |(n), ‖ · ‖n, χn,x, to the case n = −1, cf. (1.28), (1.30), (1.38). We
also introduce the probability kernels, see above (1.21) for the notation

(6.2) P̃1,ω(z, dy) = Px,ω[X1∧T−1 ∈ dy], P̃1(x, dy) = Wx[X1∧T−1 ∈ ·], x ∈ lRd, where

(6.3) T−1 = inf{u ≥ 0, X∗
u ≥ L

1
10
0 } .

With the same proof as in Proposition 2.5, using exponential inequalities, cf. [23, p. 145],
in place of (2.45), we see that for large L0, for ω ∈ Ω, x ∈ ZZd,

(6.4) ‖χ−1,x(P1,ω − P̃1,ω)‖−1 ∨ ‖χ−1,x(P1 − P̃1)‖−1 ≤ e−cL
1/10
0 .

Hence it follows that for 0 ≤ n ≤ m0 + 1,

(6.5)

‖χ−1,x(P1,ω − P1)PL2
n−1‖−1 ≤ ‖χ−1,x(P1,ω − P̃1,ω)PL2

n−1‖−1 +

‖χ−1,x(P̃1,ω − P̃1)PL2
n−1‖−1 + ‖χ−1,x(P̃1 − P1)PL2

n−1‖−1 ≤ c e−cL
1/10
0 +

‖χ−1,x(P̃1,ω − P̃1)PL2
n−1‖−1 .
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With a similar argument as in (5.94), for 0 ≤ n ≤ m0 + 1, and f with |f |(n) ≤ 1, we can

construct with a cut-off function, a function H̃ supported in B(x, 3L
1/10
0 ), such that:

(6.6) H̃ agrees with PL2
n−1 f − PL2

n−1 f(x) in B(x, 2L
1/10
0 ) and |H̃|(−1) ≤ c

L
1
10
0

Ln
,

where (1.56) has been used for the last inequality. We hence find that with large L0

|χ−1,x(P̃1,ω − P̃1)PL2
n−1 f |(−1) = |χ−1,x(P̃1,ω − P̃1)H|(−1)

(1.62),(6.4),(6.6)

≤ c L
1
10
0 L−1

n ,

and hence with (6.5), (6.6):

(6.7)

‖χn,0(P1,ω − P1)PL2
n−1‖n ≤ Lβ

n ‖χn,0(P1,ω − P1)PL2
n−1‖−1

≤ Lβ
n(c e−cL

1
10
0 + c L

1
10
0 L−1

n )
(1.17)

≤ 1

10
L−δ

n .

This proves our claim.

The next proposition is instrumental and enables to construct good couplings of the
diffusion in random environment with Brownian motion. From now on we specify the
choices of ν = 2, β = 1

2
, a, c0, ϕ, ψ, ζ,M0,M , cf. (1.5), (1.13), (1.14), (1.32), (1.43), (1.46).

In accordance with the convention concerning constants started above Theorem 1.1, con-
stants will solely depend on d,K,R in view of the choices we just made. We denote with
X̃t, t ≥ 0, and X̃0

t , t ≥ 0, the canonical processes on C(lR+, lR
d)2, the space on which we

will construct the coupling measures.

Proposition 6.2. (d ≥ 3)

Given K > 1, R > 0, there exists η0 > 0, depending only on d,K,R, such that for
a(x, ω), b(x, ω) as in (1.2), satisfying (1.4), (1.7), (0.4), and

(6.8) |a(x, ω) − I| ≤ η0, |b(x, ω)| ≤ η0, for x ∈ lRd, ω ∈ Ω ,

then there is an event Ω with full lP-measure and a finite N(·) on Ω, such that for ω ∈ Ω,
when n ≥ N(ω):

(6.9) for all x ∈ Ln ZZd ∩ (4Tn+3), x ∈ Bn(ω), (cf. (1.32), (2.1) for notations) ,

and for any y ∈ lRd there is a coupling measure Q̃n,y,ω on C(lR+, lR
d)2 such that under

Q̃n,y,ω,

X̃0
. is distributed as Xαn. under Wy ,(6.10)

X̃.∧T2Tn+3
( eX) is distributed as X.∧T2Tn+3

under Py,ω, and ,(6.11)

Q̃n,y,ω

[
sup

u≤L2
n+3

|X̃u − X̃0
u| ≥ 3D̃n

]
≤ L−δ/2

n .(6.12)
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Proof. In the sequel we use the expression “small enough η0”, in place η0 ≤ c, with c a
constant, with the meaning explained above Proposition 6.2. From now on we assume
η0 < 1 small enough so that (1.3), (1.5) are satisfied. We now choose constants L0 and
c2 according to Theorem 1.1, Lemma 6.1, and such that for all n ≥ 0, (recall W0 denotes
the Wiener measure)

(6.13)

i) if in (2.45), κ0
n =

1

2
(D̃n/Dn), then e−κn in (2.46) is smaller than 1

10
L−δ

n ,

ii) W0[X
∗
L2

n
≥ v] ≤ 1

10
exp

{
− 4v

Dn

}
, for v ≥ 1

4
Dn ,

iii)
(
EW0

[∣∣XL2
n
|4

] 1
2 + D̃2

n

)
W0

[
X∗

L2
n
>

D̃n

4

] 1
2 ≤ 1

100
,

iv) |χn,0|(n) sup
1
2
≤α6=α′≤4

‖PαL2
n
− Pα′L2

n
‖n

|α− α′| ≤ L0, cf. (4.173) ,

and

(6.14)
∑
n≥0

L
−(1+ 9

10
)δ

n <
1

10
.

We have now specified L0, and we will first see that:

(6.15)
for η0 small enough, (1.47), (1.48), (1.49) hold for all

n0 ≥ m0 + 1, and |α0 − 1| < 1

10
.

To this end, first recall from (1.9) that for ω ∈ Ω, x ∈ lRd, there is an (Ft)-Brownian
motion β. such that Px,ω-a.s., for all t ≥ 0,

(6.16) Xt = x +

∫ t

0

σ(Xs, ω) dβs +

∫ t

0

b(Xs, ω) ds, with σ(·, ω) = a(·, ω)
1
2 .

Note that for y ∈ lRd, ω ∈ Ω, σ(y, ω) − I = (a(y, ω) − I)(σ(y, ω) + I)−1, so for small η0,
y ∈ lRd, ω ∈ Ω, with (6.8),

(6.17) |σ(y, ω)− I| ≤ c η0 .

Further from the exponential martingale inequalities, cf. [23], p. 145,

(6.18)
Px,ω

[
sup
v≤t

∣∣
∫ v

0

σ(Xs, ω) dβs − βv

∣∣ ≥ u
]
≤ c exp

{
− cu2

η2
0 t

}
,

for u, t > 0, x ∈ lRd, ω ∈ Ω .

Choosing η0 small, with (6.8), (6.16), (6.18), we see that for ω ∈ Ω, 0 ≤ n ≤ m0 + 1,
x ∈ Ln Z

d, A ⊆ Cn(x), γ ∈ {1, . . . , 2d 5d−1}, and the notation (1.44),

(6.19) Jn,x,A,γ(ω) = 0 ,

so that (1.48) holds for 0 ≤ n ≤ m0 + 1. Likewise with (6.13) ii), we see that choosing η0

small we can make sure that for ω ∈ Ω, 0 ≤ n ≤ m0 + 1, y ∈ lRd,

(6.20) Py,ω[X∗
L2

n
≥ v] ≤ exp

{
− v

Dn

}
, for all v ≥ Dn .
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Further we have

χn,0(Rn − PL2
n
) = χn,0 P1,ω(PL2

n−1,ω − PL2
n−1) + χn,0(P1,ω − P1)PL2

n−1 ,

and with (1.60), (6.1), (6.18), it follows that choosing η0 small, for ω ∈ Ω, and 0 ≤ n ≤
m0 + 1,

(6.21) ‖χn,0(Rn − PL2
n
)‖n ≤ 1

5
L−δ

n .

Recall that, cf. (1.22)

αn =
1

dL2
n

E0[|XL2
n∧Tn

|2] ,

and note that for small η0, with (6.13) iii), (6.18), for 0 ≤ n ≤ m0 + 1,

|E0[|XL2
n
|2] − E0[|XL2

n∧Tn |2]| ≤ E0[(|XL2
n
|2 + D̃2

n), Tn < L2
n]

≤ (E0

[
|XL2

n
|4

] 1
2 + D̃2

n)
(
P0

[
sup
s≤L2

n

|βs| ≥ D̃n

4

] 1
2

+ P0

[
sup

0≤s≤L2
n

∣∣∣
∫ s

0

(σ(Xs, ω) − I)dβs

∣∣∣ ≥ D̃n

4

] 1
2
)

≤ 1

20
.

So when η0 is small enough, for 0 ≤ n ≤ m0 + 1,

(6.22) |αn − 1| ≤ 1

20dL2
n

+
1

dL2
n

|E0[|XL2
n
|2] − E0[|βL2

n
|2]

(6.16),(6.18)

≤ 1

10L2
n

,

and hence

(6.23)
i) |αn − αn+1| ≤ L

−(1+ 9
10

)δ
n , 0 ≤ n ≤ m0, and

ii) αn ∈
[

1

4
, 4

](
=

[
1

2ν
, 2ν

])
, for 0 ≤ n ≤ m0 + 1 .

This proves that (1.49) holds for 0 ≤ n ≤ m0 + 1. Then observe that for 0 ≤ n ≤ m0 + 1,
ω ∈ Ω,

‖χn,0 S̃n‖n ≤ ‖χn,0(S̃n − Sn)‖n + ‖χn,0(R
n − PL2

n
)‖n + ‖χn,0(PαnL2

n
− PL2

n
)‖n ,

so that using (6.20), (2.46), (6.13) i) to bound the first term in the right-hand side, (6.21)
to bound the second term, (6.13) iv), (6.22), (6.23) ii) to bound the last term, we see that
when η0 is small, for ω ∈ Ω, 0 ≤ n ≤ m0 + 1,

(6.24) ‖χn,0 S̃n‖n ≤ 1

10
L−δ

n +
1

5
L−δ

n +
1

5
L0 L

−2
n ≤ L−δ

n .

Hence with (6.20), we see that for small η0, when ω ∈ Ω, 0 ≤ n ≤ m0 + 1,

(6.25) 0 ∈ Bn(ω) .

We can now apply Theorem 1.1, and with (6.14) note that |α0 − 1| < 1
10

implies that
(1.49) remains also satisfied by induction, so that (6.15) is proved.
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As a next step observe that for n ≥ m0 + 1,

lP
[
for some x ∈ Ln ZZd ∩ (4Tn+3), x /∈ Bn(ω)

]
≤

c
(
L2

n+3

Ln

)d

L−M0
n

(1.46)

≤ c L
2d(1+a)3−100d(1+a)m0+2

n ≤ c L−98d
n ,

and this last quantity is the general term of a convergent series. With Borel-Cantelli’s
lemma, we see that there is an event Ω with full lP-measure, and a finite N(·) on Ω, such
that when n ≥ N(ω), (6.9) holds.

Let us now fix ω ∈ Ω. Given n ≥ N(ω), we denote with h some [0, 1]-valued continuous
function with value 1 on 2Tn+3, and 0 on (3Tn+3)

c. With Proposition 3.1, we have for
y ∈ lRd a coupling measure Qn,y on (lRd × lRd)lN, under which the canonical processes

Xk, k ≥ 0, and X
0

k, k ≥ 0, have the laws of the Markov chains on lRd starting at y with

respective transitions R̃n,h, cf. (3.4), and R0
n. Using product of bridge measures in time

L2
n between z, z′ ∈ lRd

Q
L2

n
z,z′ = (h(x) pL2

n,ω(z, z′) + (1 − h(x)) pαnL2
n
(z, z′))−1

(
h(x)pL2

n
(z, z′)PL2

n
z,z′,ω

+ (1 − h(x)) pαnL2
n
(z, z′)PL2

n

z,z′

)

with P
L2

n

z,z′,ω and P
L2

n

z,z′ respectively denoting the bridge measures in time L2
n between z, z′

for the diffusion in the environment ω, and for Brownian motion with covariance αn I, to
interpolate between times k L2

n and (k+ 1)L2
n, for the first canonical process and product

of bridge measures P
L2

n
z,z′ to interpolate between times k L2

n and (k + 1)L2
n for the second

canonical process (so that conditional on Xk, k ≥ 0, X
0

k, k ≥ 0, all these bridges are

independent) we can construct a coupling measure Q̃n,y,ω on C2(lR+, lR
d), y ∈ lRd, so that

(6.10), (6.11) holds. Then using (3.6), (6.9), (1.39), we find:

Q̃n,y,ω

[
sup

u≤L2
n+3

|X̃u − X̃0
u| ≥ 3D̃n

]
≤

(Ln+3

Ln

)4

(κn L
−δ
n + e−κn) + 2

(Ln+3

Ln

)2

e−κn ≤ L−δ/2
n ,

(6.26)

when n is large enough. Hence increasing N(·) if necessary, we see that for ω ∈ Ω, (6.10),
(6.11), (6.12) holds, and this finishes the proof of Proposition 6.2.

We are now ready to state and prove our main applications.

Theorem 6.3. (d ≥ 3)

With η0(d,K,R) > 0, as in Proposition 6.2, when a(x, ω), b(x, ω), as in (1.2), satisfy
(1.4), (1.7), (0.4) as well as (6.8), i.e.

|a(x, ω) − I| ≤ η0, |b(x, ω)| ≤ η0, for x ∈ lRd, ω ∈ Ω ,

then lP-a.s.,

1√
t
X. t converges in P0,ω-law, as t→ ∞, to a Brownian motion on

lRd with deterministic variance σ2 > 0 ,
(6.27)

(6.28) for all x ∈ lRd, Px,ω-a.s., lim
t→∞

|Xt| = ∞ .
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Proof. We keep the notations of Proposition 6.2. We first prove (6.27). From (6.23) we
know that αn converges and we write

(6.29) σ2 def
= lim

n
αn

(
∈

[
1

4
, 4

])
.

The claim (6.27) will follow once we prove that for any ω in Ω, in the notations of
Proposition 6.2,

(6.30) lim
t→∞

E0,ω

[
F

(
1√
t
X. t

)]
= EW0[F (Xσ2.)] ,

for any F on C([0, T ], lRd), T > 0, bounded by 1, Lipschitz relative to the distance function

(6.31) DT (w,w′) = sup
s≤T

|w(s) − w′(s)| ∧ 1, w, w′ ∈ C([0, T ], lRd) ,

with Lipschitz constant 1, with a slight abuse of notations in (6.30). For t large we define
the integer n(t) ≥ 0, such that

(6.32) L2
n(t)+1 ≤ t < L2

n(t)+2 ,

and observe that for ω ∈ Ω, F as above and large t

(6.33)

∣∣∣E0,ω

[
F

(
1√
t
X. t

)]
− EW0[F (Xσ2.)]

∣∣∣ ≤ a1 + a2 + a3, where

a1(t) = |E0,ω

[
F

(
1√
t
X. t

)]
− E0,ω

[
F

(
1√
t
X(. t)∧T2Tn(t)+3

)]∣∣∣ ,

a2(t) =
∣∣∣E0,ω

[
F

(
1√
t
X(. t) ∧ T2Tn(t)+3

)]
− EW0

[
F

(
1√
t
Xαn(t).

)]∣∣∣ ,

a3(t) =
∣∣EW0

[
F

(√
αn(·)X.

)]
− EW0[F (σX.)]

∣∣ ,

and we have used Brownian scaling for a3(·). From (6.29) and dominated convergence,
we see that

(6.34) lim
t→∞

a3(t) = 0 .

Further when t is large,

a1(t) ≤ 2P0,ω[T2Tn(t)+3
< T t]

(6.32)

≤ 2P0,ω

[
T2Tn(t)+3

< T L2
n(t)+2

]

(2.10)

≤ c exp
{
− c L2

n(t)+3

}
, so that

(6.35) lim
t→∞

a1(t) = 0 .

As for a2(t), using the coupling measure Q̃n(t),0,ω from Proposition 6.2, we find with (6.10),
(6.11), that for large t

a2(t) =
∣∣∣E eQn(t),0,ω

[
F

(
1√
t
X̃(. t)∧T

2Tn(t)+3( eX)

)
− F

(
1√
t
X̃0
. t

)]∣∣∣ ≤

E
eQn(t),0,ω

[
sup
u≤T t

|X̃u∧T2Tn(t)+3
( eX) − X̃0

u|
√
t

∧ 1
] (6.12),(6.32)

≤
(2.10)

3D̃n(t)√
t

+ L
−δ/2
n(t) + c e−cL2

n(t)+3,
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so that

(6.36) lim
t→∞

a2(t) = 0 .

Combining (6.34) - (6.36), the claim (6.30) follows. This proves (6.27).

We now prove (6.28). When n is large, it follows from standard estimates on Brownian
motion and (1.49) that for |z| = Ln+1,

(6.37) Wz

[
Xαn . exits B(0, 2Ln+2) before time L2

n+3 or entering B(0, 4D̃n)] ≥ 1 − κn

`n
.

Then for ω ∈ Ω, with Proposition 6.2 and (6.37) we see that for large n and |z| = Ln+1,

(6.38) Q̃n,z,ω

[
X̃. enters B(0, Ln) before exiting B(0, Ln+2)] ≤ L−δ/2

n +
κn

`n
≤ κn

`n
.

With (6.11), we thus see that for large n and |z| = Ln+1,

Pz,ω[HB(0,Ln) < TB(0,Ln+2)] ≤
κn

`n
≤ `−1/2

n ,

so that with the strong Markov property we find:

(6.39) Pz,ω[HB(0,Ln) = ∞] ≥ ∏
k≥0

(1 − `
−1/2
n+k ) −→

n→∞
1 .

It now follows in a standard way that when ω ∈ Ω,

(6.40) for x ∈ lRd, Px,ω

[
lim
t→∞

|Xt| = ∞
]

= 1 ,

and this proves (6.28).

We conclude this section with an application to homogenization in random media.
Given f, g bounded functions on lRd respectively continuous and Hölder continuous, under
the assumptions of Theorem 6.3, for ω ∈ Ω and ε > 0, there is a unique bounded solution
of the Cauchy problem

(6.41)

{
∂t uε = Lε uε + g in (0,∞) × lRd ,

uε|t=0 = f ,

where

(6.42) Lε =
1

2

d∑
i,j=1

aij

(
x

ε
, ω

)
∂2

ij +
d∑

i=1

1

ε
bi

(
x

ε
, ω

)
∂i ,

see for instance [9, Theorem 12, p. 25], and [10, Theorem 5.3]. The asymptotic behavior
of uε, as ε→ 0, is intimately related to the invariance principle proved in Theorem 6.3.

Theorem 6.4. (d ≥ 3)

Under the same assumptions as in Theorem 6.3, on a set of full lP-measure, for any
f, g as above, the solution uε of (6.41) converges uniformly on compact subsets of lR+× lRd

to the solution of the Cauchy problem

(6.43)

{
∂t u0 = σ2 ∆ u0 + g in (0,∞) × lRd ,

uε|t=0 = f ,

with σ2 as in (6.27).
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Proof. Consider ω ∈ Ω, (cf. Proposition 6.2), and ε > 0, with [10, Theorem 5.3], we can
write

(6.44) uε(s, x) = Ex/ε,ω

[
f(εXs/ε2) −

∫ s

0

g(εXv/ε2) dv
]
, for s ≥ 0, x ∈ lRd .

Letting ε−1 play the role of t in (6.32), very similar bounds as in (6.33) - (6.36), with some
obvious modifications for the bound above (6.36) yield that as ε→ 0,

(6.45)
uε converges uniformly on compact subsets of lR+ × lRd to

u0(s, x) = EWx

[
f(Xσ2s) −

∫ s

0

g(Xσ2v) dv
]
,

and our claim now follows.

The proofs of the last two theorems illustrate the fact that the measures constructed in
Proposition 6.2 offer a very quantitative and handy comparison of the isotropic diffusion
in random environment with Brownian motion.

A Appendix

This appendix collects several results concerning the Hölder-norms | · |(n), ‖ · ‖n, cf. (1.28),
(1.30). In particular the effective control of these norms with the help of wavelets is discussed
in Proposition A.2. We begin with the convenient

Lemma A.1. (n ≥ 0, Ln as in (1.15), β ∈ (0, 1))

Consider a non-empty index set I, f, (gi)i∈I , scalar functions on lRd, (xi)i∈I , points of lRd,
such that

f = gi, on B(xi, 2Ln), i ∈ I, and(A.1)

Suppf ⊆
⋃

i∈I

B(xi, Ln), then(A.2)

|f |(n) ≤ 3 sup
i∈I

|gi|(n) .(A.3)

Moreover if f is a scalar function, Γ > 0, and

sup
x∈lRd

|f(x)| ≤ Γ ,(A.4)

|f(x) − f(y)| ≤ Γ
∣∣∣x− y

Ln

∣∣∣
β
, for x, y in the open Ln-neighborhood(A.5)

of the support of f and |x− y| < Ln,

then

|f |(n) ≤ 3Γ .(A.6)
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Proof. We first prove (A.3). Note that

|f |∞ ≤ sup
i∈I

|gi|∞ ,

and for x, y in lRd with |x− y| ≥ Ln,

Lβ
n

|f(x) − f(y)|
|x− y|β ≤ 2 sup

i
|gi|∞ .

On the other hand, when x, y are distinct points of lRd, with |x− y| < Ln and say x ∈ Suppf ,
then x ∈ B(xi0 , Ln), for some i0 ∈ I. One then has

Lβ
n

|f(x) − f(y)|
|x− y|β

(A.1)
= Lβ

n

|gi0(x) − gi0(y)|
|x− y|β ,

whereas when none of x, y belongs to Supp f , the left member vanishes. The claim (A.3) now
follows.

We now prove (A.6). Note that when x, y are such that |x− y| ≥ Ln, then

Lβ
n

|f(x) − f(y)|
|x− y|β ≤ 2 |f |∞

(A.4)

≤ 2Γ .

On the other hand when x, y are distinct points of lRd with |x − y| < Ln, and either some or
none of them belongs to Supp f , we find with (A.5)

Lβ
n

|f(x) − f(y)|
|x− y|β ≤ Γ ,

and the claim (A.6) now follows.

The next result will provide an effective control of the Hölder-norms (1.28), (1.30), with the
help of the expansion in an orthonormal basis of wavelets. The fact that such bases give rise to
a handy control of the Hölder-property is well known, cf. Daubechies [6, p. 199-203], Mallat [16,
p. 169-173]. The proposition we will now prove, gives a version of these results useful for the
calculations of Section 4. We introduce the sequence of non-negative integers Jn, n ≥ 0, such
that

(A.7) 2Jn ≤ Ln < 2Jn+1 ,

and recall the L2(lRd)-orthogonal expansion in (1.35).

Proposition A.2. (d ≥ 1, 0 < β < 1, ϕ, ψ)

There is a constant Γ > 1, depending on d, β, ϕ, ψ, such that for n ≥ 0, and f compactly
supported bounded measurable function, one has, cf. (1.35) for the notations,

(A.8)
1

Γ
|f |(n) ≤ sup

α,`≤Jn,p∈ZZd

α6=0, for `<Jn

2β(Jn−`)|cJn
α,`,p| ≤ Γ |f |(n) .

Moreover, when A is a bounded linear operator mapping bounded measurable functions on lRd

into bounded measurable compactly supported functions on lRd, and A vanishes for functions
supported in the complement of some compact subset of lRd, then

(A.9)
1

Γ
‖A‖n ≤ sup

α,`≤Jn,p∈ZZd

α6=0, when `<Jn

∑
α′,`′≤Jn,p′∈ZZd

α′ 6=0, when `′<Jn

2β`′

2β`

1

2d`

∣∣〈θα,`,p, Aθα′,`′,p′
〉∣∣ ≤ Γ‖A‖n ,

with the notation 〈h, g〉 =
∫
h(x) g(x) dx.
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Proof. We begin with the proof of (A.8). For f as in the statement, α ∈ {0, 1}d, ` ≤ Jn, p ∈ ZZd,
with α 6= 0, when ` < Jn, the coefficients cJn

α,`,p of (A.8), are expressed in view of (1.35), as

(A.10) cJn
α,`,p =

1

2`d

∫

lRd
f(x) θα

( x
2`

− p
)
dx ,

(note incidentally that for n ≥ 0, ` ≤ Jn, α 6= 0, cJn
α,`,p = c

Jn+1

α,`,p ). Denoting throughout the proof
with c a positive constant changing from place to place and solely depending on d, β, ϕ, ψ, we
find that for ` ≤ Jn, p ∈ ZZd, α ∈ {0, 1}d, with α 6= 0 if ` < Jn:

(A.11) |cJn
α,`,p| ≤ c |f |∞ ≤ c |f |(n) .

Note that when α 6= 0, θαi = ψ, for some 1 ≤ i ≤ d, in (1.33), hence

(A.12)

∫
θα(x) dx = 0, for α 6= 0 .

We see that for ` < Jn, p ∈ ZZd, α 6= 0:

(A.13) |cJn
α,`,p| = 2−`d

∫

2`(p+Supp θα)
(f(x) − f(2`p)) θα

(
x

2`
− p

)
dx ,

and hence

(A.14) |cJn
α,`,p| ≤ c

(
2`

Ln

)β
|f |(n) ≤ c 2β(`−Jn) |f |(n) .

The right inequality in (A.8) now follows from (A.11), (A.14).

Conversely, expanding f as in (1.35), assume that

(A.15) ρf
def
= sup

{
|cJn

α,`,p| 2β(Jn−`); α ∈ {0, 1}d, ` ≤ Jn, p ∈ ZZd, α 6= 0 when ` < Jn

}
<∞ .

Observe that for `1 ≤ `0 ≤ Jn and x ∈ lRd,

(A.16)

∣∣∣
∑
α,p

`1≤`≤`0

cJn
α,`,p θα

(
x

2`
− p

)∣∣∣ ≤ ρf

∑
α,p

`1≤`≤`0

2β(`−Jn)
∣∣∣θα

(
x

2`
− p

)∣∣∣

≤ c ρf
∑

`1≤`≤`0

2β(`−Jn) ≤ c ρf 2β(`0−Jn) ,

since for each ` ≤ Jn, at most c of the summands in the expression after the first inequality do
not vanish. In particular

∑
α,p

`1≤`≤Jn

cJn
α,`,p θα,`,p converges uniformly (and of course in L2) towards

f , which is continuous and satisfies:

(A.17) |f |∞ ≤ c ρf .

Note that when |x− y| ≥ 2Jn , one has

(A.18) |f(x) − f(y)| ≤ 2 |f |∞ ≤ 2 c ρf ≤ c ρf

∣∣∣x− y

Ln

∣∣∣
β
.

On the other hand, when |x− y| < 2Jn , so that

(A.19) 2`0 < |x− y| ≤ 2`0+1, with `0 < Jn ,
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we introduce f̃ =
∑

α,p

`0≤`≤Jn

cJn
α,`,p θα,`,p, and find

(A.20)

|f(x) − f(y)| ≤ 2 |f − f̃ |∞ + |f̃(x) − f̃(y)|
(A.16)

≤

c ρf 2β(`0−Jn) +
∣∣∣

∑
α,p

`0≤`≤Jn

cJn
α,`,p

(
θα

(
x

2`
− p

)
− θα

(
y

2`
− p

))∣∣∣ ≤

c ρf 2β(`0−Jn) + c ρf

∑
`0≤`≤Jn

2β(`−Jn)
∣∣∣x− y

2`

∣∣∣
(A.19)

≤

c ρf

(∣∣∣x− y

Ln

∣∣∣
β

+ |x− y| ∑
`0≤`≤Jn

2−(1−β)`−βJn

)
≤

c ρf

(∣∣∣x− y

Ln

∣∣∣
β

+ |x− y| 2−(1−β)`0−βJn

) (A.19)

≤ c ρf

∣∣∣x− y

Ln

∣∣∣
β
.

Combining (A.17), (A.18), (A.20), the proof of (A.8) is completed.

We now turn to the proof of (A.9). We begin with the proof of the left-hand inequality. We
denote with ΦA the middle expression of (A.9), which we assume finite. We pick a [0, 1]-valued
function h, compactly supported such that

|h|(n) ≤ 3, and(A.21)

A(hg) = A(g) for any bounded measurable g .(A.22)

Indeed given our assumptions on A, we can for instance pick h of the form (1.37), with u large,
and use (A.6). For g with |g|(n) ≤ 1, we define

(A.23) f = hg ,

so that expanding f as in (1.35) with (Jn in place of j0), and keeping the notation (A.15) for
ρf , we find:

(A.24) ρf

(A.8)

≤ c |f |(n)

(1.29),(A.21)

≤ c |g|(n) ≤ c .

Since A(g) = A(f) is bounded measurable and compactly supported, we find:

(A.25) A(g) = A(f)
(1.35),(A.10)

=
∑

α,`≤Jn,p
α6=0, for `<Jn

1

2`d
〈θα,`,p, A(f)〉θα,`,p .

We also know that the partial sums f̃ , cf. above (A.20), converge uniformly to f , as `0 tends to
−∞, and only finitely many terms in the sum defining f̃ do not identically vanish on the support
of h. Using the continuity of A for the sup-norm, we find that for α ∈ {0, 1}d, ` ≤ Jn, p ∈ ZZd,
with α 6= 0, for ` < Jn, with hopefully obvious notations:

(A.26)

2β(Jn−`) 1

2`d
|〈θα,`,p, A(f)〉| ≤ 2β(Jn−`)−`d

∑
α′,`′,p′

∣∣cJn
α′,`′,p′(f)

∣∣ ∣∣〈θα,`,p, A(θα′,`′,p′)
〉∣∣

(A.15)

≤ ρf

∑
α′,`′,p′

2β`′

2β`

1

2`d

∣∣〈θα,`,p, A(θα′ ,`′,p′)
〉∣∣ .

Keeping in mind (A.24), we see coming back to (A.25) with the help of (A.8) that A(g) is a
β-Hölder continuous function and:

(A.27) |A(g)|(n) ≤ cΦA, (cf. above (A.21) for the notation) .
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This proves the left inequality of (A.9).

We now prove the right inequality of (A.9). Without loss of generality we assume ‖A‖n

finite, i.e. A maps boundedly the set of bounded β-Hölder continuous functions endowed with
| · |(n), into itself. Consider α0 ∈ {0, 1}d, `0 ≤ Jn, p0 ∈ ZZd, with α0 6= 0, if `0 < Jn, and J ′ a
finite set of (α′, `′, p′) satisfying analogous constraints. Using the convention sign (0) = 1, we
define

(A.28) f =
∑
J ′

sign
(〈
θα0,`0,p0 , A(θα′,`′,p′)

〉)
2β`′ θα′,`′,p′ .

From (A.8), we deduce that

(A.29) |f |(n) ≤ c 2βJn , and that

(A.30)

|A(f)|(n)

(A.8),(A.10)

≥ c 2β(Jn−`0) 1

2`0d

∣∣〈θα0,`0,p0 , A(f)
〉∣∣

(A.28)
= c 2β(Jn−`0)

∑
J ′

2β`′

2`0d

∣∣〈θα0,`0,p0 , A(θα′,`′,p′)
〉∣∣

(A.29)

≥ c |f |(n)

∑
J ′

2β`′

2(d+β)`0

∣∣〈θα0,`0,p0 , A(θα′ ,`′,p′)
〉∣∣ .

Since f in (A.28) is not identically zero and α0, `0, p0, and J ′ are arbitrary, we find that

(A.31) ‖A‖n ≥ cΦA, (cf. above (A.21) for the notation) .

This finishes the proof of (A.9), and of Proposition A.2.
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