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Abstract

We study the eigenvalues of non-normal square matrices of the form
An = UnTnVn with Un,Vn independent Haar distributed on the unitary group
andTn real diagonal. We show that when the empirical measure of theeigen-
values ofTn converges, andTn satisfies some technical conditions, all these
eigenvalues lie in a single ring.

1 The problem

In [6], M. Krishnapur and the authors considered the convergence of the empricial
measure of (complex) eigenvalues of matrices of the formAn = TnUn, whereUn

is Haar distributed onU(n), the unitary group ofn×n matrices, and independent
of the self-adjoint matrixTn (which therefore can be assumed diagonal, with real

non-negative entriess(n)
i ). That is, withλ(n)

i denoting the eigenvalues ofAn, LAn =
n−1∑n

i=1 δ
λ(n)

i
their empirical measure, and withLTn the empirical measure of
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the entries ofTn, the following is part of the main result of [6]. Throughout,for
a probability measureµ supported onR or on C, we write Gµ for its Stieltjes
transform, that is

Gµ(z) =

∫

µ(dx)
z−x

.

Gµ is analytic off the support ofµ. We writeGTn for GL̃Tn
, where for any probabil-

ity measureµ on R we useµ̃ to denote the symmetrized ofµ, i.e. the probability
measure satisfying ˜µ(A) = (µ(A)+µ(−A))/2.

Theorem 1. Assume{LTn}n converges weakly to a probability measureΘ com-
pactly supported onR+. Assume further the following.

1. There exists a constant M> 0 so that

lim
n→∞

P(‖Tn‖ > M) = 0. (1)

2. There exist a sequence of events{Gn} with P(Gc
n)→ 0 and constantsδ,δ′ >

0 so that for Lebesgue almost any z∈C, withσz
n the minimal singular value

of zI−An,
E(1Gn1{σz

n<n−δ}(logσz
n)

2) < δ′ . (2)

3. There exist constantsκ,κ1 > 0 such that

|ℑGTn(z)| ≤ κ1 on {z : ℑ(z) > n−κ} . (3)

Then LAn converges in probability to a limiting probability measureµA, rota-
tionally invariant in C and supported on the annulus{reiθ : a ≤ r ≤ b} , where

a = 1/
√

∫

x−2Θ(dx) and b=
√

∫

x2Θ(dx).

The conditions of Theorem 1 were then showed to hold in some examples of
interest, and in particular to provide a rigorous proof of the Feinberg-Zee “single
ring theorem”, see [3]. A version of Theorem 1 was also provedto hold when the
Haar measure onHn was replaced by the Haar measure on the orthogonal group,
see [6, Theorem 18].

Our goal in this paper is to improve the convergence statement in Theorem 1
to a statement concerning the convergence of the support ofLAn. The following is
our main theorem.
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Theorem 2. Assume Tn,Un satisfy the conditions of Theorem 1 and, in addition,
assume that

an :=
1

√

∫

x−2LTn(dx)
→ a =

1
√

∫

x−2Θ(dx)
, (4)

and

bn :=

√

∫

x2LTn(dx) → b =

√

∫

x2Θ(dx) . (5)

Further assume if a> 0 thatsupn‖T−1
n ‖ < ∞. Then, the support of LAn converges

to supp(µA) = {z∈ C : |z| ∈ [a,b]} in probability. If moreover the assumptions of
Theorem 1 hold almost surely with respect to the sequence Tn, then the conver-
gence of the support holds almost surely.

WhenTn is distributed as the diagonal matrix of singular values of aGinibre
matrix, the conclusion of Theorem 2 follows e.g. from the results in [10].

Remark 3. Recall thatµA is supported on the annulus[a,b]× [0,2π). An elemen-
tary computation using the expression for the densityρA = ρA(r) of µA, see [6, 7],
shows that

lim
rցa

ρA(r) =
1

πa2 , lim
rրb

ρA(r) =
1

πb2 .

It is maybe surprising that in spite of the density having a strictly positive density
at the boundary, the eigenvalues still stick to the boundary.

1.1 Background and description of the proof

We recall that the main difficulty in studying the ESDLAn is that An is not a
normal matrix, that isAnA∗

n 6= A∗
nAn, almost surely. For normal matrices, the limit

of ESDs can be found by the method of moments or by the method ofStieltjes’
transforms. For non-normal matrices, the only known methodof proof, which is
the one followed in [6], is more indirect and follows an idea of Girko [4]. We
recall the general outline and some crucial steps which willbe needed in the proof
of Theorem 2.

Introduce the 2n×2n matrix

Hz
n :=

[

0 zI−An

(zI−An)
∗ 0

]

. (6)
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Let νz
n denote the ESD ofHz

n,
∫

1
y−x

dνz
n(x) =

1
2n

tr
(

(y−Hz
n)

−1) ,

then, see [6, Eq. (7)],
∫

ψ(z)dLAn(z) =
1
2π

∫

C

∆ψ(z)
∫

R

log|x|dνz
n(x)dm(z) . (7)

The main advantage of this formulation is that one can reduceattention to the
study of the ESD of matrices of the form(T +U)(T +U)∗ whereT is real di-
agonal andU is Haar distributed. In the limit (i.e., whenT andU are replaced
by operators in aC∗-algebra that are freely independent, withT bounded and self
adjoint andU unitary), the limit ESD has been identified by Haagerup and Larsen
[7]. The Schwinger–Dyson equations give both a characterization of the limit
and, more important to us, a discrete approximation that canbe used to estimate
the discrepancy between the pre-limit ESD and its limit. These will play a crucial
role in the study of the support.

Notation

We describe our convention concerning constants. Throughout, by the wordcon-
stantwe mean quantities that are independent ofn (or of the complex variablesz,
z1). Generic constants denoted by the lettersC or c, have values that may change
from line to line, and they may depend on other parameters. Constants denoted
byCi , K, M, κ andκ′ are fixed and do not change from line to line.

2 Preliminaries: evaluation of νz and convergence
rates

We quickly recall the analysis in [6], assuming throughout that‖Tn‖ is uniformly
bounded by a constantM < ∞. Fix z∈ C and writeρ = |z|. With

Un =

(

0 Un

0 0

)

,Yn =

(

0 Bn

B∗
n 0

)

, (8)
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whereBn = ρUn +Tn, Tn a real, diagonal matrix of uniformly bounded norm and
Un aHn unitary matrix, define

Gn(z) = E[
1
2n

tr
(

(z−Yn)
−1)] , GTn(z) = Gn(z)|ρ=0

and

Gn
U(z) = E[

1
2n

tr
(

Un(z−Yn)
−1)] .

Then, see [6, Eq. (35)], the finiten Schwinger-Dyson equations for this problem
give

ρ(Gn(z1))
2 = 2Gn

U(z1)(1+2ρGn
U(z1))−O1(n,z1) , (9)

where

O1(n,z1) = 4E

[

(
1
2n

tr−E[
1
2n

tr])⊗ (
1
2n

tr−E[
1
2n

tr])∂(z1−Yn)
−1Un

]

= O

(

ρ2

n2ℑ(z1)2(ℑ(z1)∧1)

)

.

In particular, we have

Gn
U (z1) =

1
4ρ

(−1+
√

1+4ρ2Gn(z1)2+4O1(n,z1)) , (10)

with the choice of the square root determined by analyticityand behavior at infin-
ity. Further, if one defines

z2 = ψn(z1) := z1−
ρ2Gn(z1)

(1+2ρGn
U(z1))

, (11)

then, see [6, Eq. (39)], for allz1 with ℑ(z2) > 0 given by (11),

Gn(z1) = GTn(ψn(z1))− Õ(n,z1,ψn(z1)) , (12)

where

Õ(n,z1,z2) =
2O(n,z1,z2)

(1+2ρGn
U(z1))

and

|O(n,z1,z2)| ≤
Cρ2

n2|ℑ(z2)|ℑ(z1)2(ℑ(z1)∧1)
.

In particular, forℑ(z1) large, it holds thatGn(z1) andGn
U(z1) are small, implying

that z2 is well defined withℑ(z2) > 0. This leads (see [6, Lemma 10]) to the
following weak convergence statement.
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Lemma 4. If LTn converges weakly in probability to a probability measureΘ, then
for any z∈ C, νz

n converges weakly in probability toνz = Θ̃⊞λ|z|.

(Recall thatΘ̃ is the symmetrized version ofΘ.)
The main work in [6] is then to use the Schwinger-Dyson equation (12) and

deduce enough a-priori bounds that allow one to integrate the logarithmic singu-
larity in (7). While we will make use of some of these bounds, at this point we
return to our goal, which is to prove Theorem 2.

3 Convergence of the support - proof of Theorem 2

Throughout this section, we are in the setup and assumptionsof Theorem 2. We
first consider the statement concerning convergence in probability. Recall that
supp(µA) = {z∈ C : |z| ∈ [a,b]}. Since the density ofµA is positive on its support,
see [6, Remark 8], we only need to prove that ifz 6∈ supp(µA) then there exists an
ε = ε(z) > 0 so that, withB(z,ε) denoting an open ball inC centered atz with
radiusε,

P(LAn(B(z,ε)) 6= 0) →n→∞ 0.

Let νz
n = λ|z| ⊞ L̃Tn (i.e., νz

n denotes the free convolution ofλ|z| with the sym-
metrized empirical measure ofTn). SinceLTn → Θ weakly, we have thatνz

n → νz

weakly. WriteG
z
n for the Stieltjes transform ofνz

n. Then,G
z
n(·) converges to the

Stieltjes transform ofνz, which is denoted in the sequel byG(·).
The first observation we make reduces the study of the supportof LAn to a

question concerningνz
n.

Lemma 5. For each z6∈ supp(µA) there exists anε = ε(z) so thatνz′
n(B(0,ε)) = 0

if |z−z′| < ε, for all n large.

Before bringing the proof of Lemma 5, we provide an a-priori estimate on
the spectral radius of certain operators. Throughout, we use r(A) to denote the
spectral radius of an operatorA. We use the convention that‖ · ‖ denotes the
operator norm and‖ · ‖2 the Hilbert-Schmidt norm. An operatorT in a non-
commutative probability space is calledR-diagonaliff it has the same distribution
asUH with U unitary,H positive, and the algebras generated by(U,U∗) andH
freely independent, see [7, 9].
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Lemma 6. Let A,B be elements of a non-commutative tracialC∗-probability space.
Assume that A is R-diagonal and that there exists a constant c0 > 0so that‖A‖,‖B‖≤
c0. Then, for eachε > 0 there there exists anη = η(c0,ε) > 0 so that

r(A+ηB) ≤ ‖A‖2+ ε .

(The caseη = 0 of the lemma is [7, Proposition 4.1].)

Proof. Recall thatr(A+ ηB) = lim ‖(A+ ηB)n‖1/n. By [7, Corollary 4.2], we
have that‖Ap‖ ≤ (1+ p)C‖A‖p−1

2 . Therefore, using the sub-additivity of norms,
we have, withCn = ‖(A+ηB)n‖,

Cn ≤ ‖An‖+

n−1
∑

k=0

‖Ak‖ · ‖ηB‖ ·Cn−k−1 , (13)

whereC0 = 1.
For γ > 0, setG(γ) =

∑

n≥1 γnCn. ClearlyG(γ) < ∞ for γ small enough, and
r(A+ηB)−1 = sup{γ : G(γ) < ∞}. Further,G(·) is analytic on[0, r(A+ηB)−1).
Define alsoF(γ) =

∑

n≥1 γn(1+n)‖A‖n−1
2 and note thatF(γ) < ∞ wheneverγ <

‖A‖−1
2 . From (13) we get that wheneverG(γ) < ∞,

G(γ) ≤C
∑

n≥1

γn(1+n)‖A‖n−1
2 + |η|Cc0

∞
∑

n=1

γn
n−1
∑

k=0

(1+k)‖A‖(k−1)∨0
2 Cn−k−1 .

(14)
Rearranging, we have that the second sum in the right side of (14) equals

∞
∑

n=1

γn
n−1
∑

k=0

(1+k)‖A2‖
(k−1)∨0Cn−k−1

=

∞
∑

k=0

‖A2‖
(k−1)∨0(k+1)γk+1

∞
∑

n=k+1

γn−k−1Cn−k−1

= γ

(

1+
∞
∑

k=1

‖A2‖
k−1(k+1)γk

)

(1+G(γ)) .

It follows that

G(γ) ≤CF(γ)+Cc0ηγ(1+F(γ))(G(γ)+1) .
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Therefore, for allγ with G(γ) < ∞ andF(γ) < ∞,

(1−Cc0ηγ(1+F(γ)))G(γ)≤CF(γ)+Cc0ηγ(1+F(γ)) .

It follows that forγ = (‖A‖2+ε)−1 there exists anη = η(ε,c0) so thatCc0ηγ(1+
F(γ)) < 1/2 and thereforeG(γ) < ∞. This implies the statement of Lemma 6.

We can now provide the proof of Lemma 5.
Proof of Lemma 5.Recall thatνz′

n = L̃Tn ⊞λ|z′|, see Theorem 1, and thus possesses
the same law asX +Yn whereX,Yn are freely independent in a non-commutative
probability space, the law ofX is that of a Bernoulli±|z′| variable, and the law of
Yn beingL̃Tn.

Assume first that|z| > b. We may and will assume that for someδ > 0, |z′|−
bn > δ > 0 for all n large, uniformly inz′ with |z−z′| < ε, and consider only such
n, ε and δ. We need to check that there exists anε′ such that for all|η| < ε′,
X +Yn−ηI is invertible. WritingX +Yn−ηI = X(I +X−1(Yn−ηI)), we see that
X +Yn−ηI is invertible iff I +X−1(Yn−ηI) is invertible. A sufficient condition
for that is thatr(X−1(Yn−ηI)) < 1. Since‖X−1‖ ≤ |z′|−1 and‖Yn‖ is uniformly
bounded, and sinceX−1Yn is R-diagonal with

‖X−1Yn‖2 ≤ ‖X−1‖2‖Yn‖2 = |z′|−1‖Yn‖2 = |z′|−1bn ≤ ζ < 1

for some fixedζ = ζ(b,ε,δ), the conclusion follows from an application of Lemma
6 with A = X−1Yn andB = X−1.

Similarly, if |z| ∈ [0,a) (with a > 0) and‖Y−1
n ‖ is uniformly bounded, we

repeat the argument, this time writingX +Yn−ηI = Yn(I +Y−1
n (X −ηI)), and

then using
‖Y−1

n ‖2‖X‖2 = |z′|/an < ζ < 1.

Let
A = {z : ∃ε > 0,νz

n(B(0,ε)) = 0, for all n large}.

Our next step is to prove a control onGn(·) for z∈ A .

Lemma 7. Fix z∈ A , z 6= 0. Letβ > 0 be such that for some n0 large enough,

[−2β,2β] 6∈ (∪n≥n0suppνn
z) .

Then, there are constantsα,γ, p > 0 so that for all n large and for all z1 with
ℑ(z1) > n−γ andℜ(z1) ∈ [−β,β],

|Gn(z1)−G
z
n(z1)| <

1
n1+αℑ(z1)p . (15)
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Proof. The proof is divided into several steps. The idea is to use (12) to compare
Gn andG

z
n. To do this up to a small neighborhood of the real axis, an important

point is to show thatGn andG
z
n do not cross the cut of the square root which enters

in the definition ofRρ. The latter point is first shown at a positive distance of the
real axis and then a bootstrap argument is used to approach the real axis.
Step 1.Introduce the set

Cε,β = {z1 : ℑ(z1) ∈ [ε,2ε),ℜ(z1) ∈ [−β,β]}.

Since[−β,β] 6∈ suppνz
n, we have thatℑ(G

z
n(x+ i0)) = 0 for x ∈ [−β,β]. More-

over G
z
n is uniformly Lipschitz on∪ε′′≤εCε′′,β (with constant only depending on

the distance from[−β,β] to suppνn
z, which is uniformly bounded below byβ by

hypothesis). Therefore, for any fixedε′(= β−2ε) (whose value can be taken to be
1/12 in what follows) we can chooseε small enough such that

for all z1 ∈ ∪ε′′≤εCε′′,β, it holds thatℑ(G
z
n(z1)) < ε′, ℑ(G(z1)) < ε′. (16)

By the convergence ofGn to G (which follows from the weak convergence ofLYn

to µY, see Lemma 4), which can be made uniform by uniform continuity onCε,β,
and replacingε′ by 3ε′ if necessary, we get that for alln > n0(ε),

for all z1 ∈ Cε,β, it holds thatℑ(Gn(z1)) < 3ε′. (17)

Step 2.Considerz1 with ℜ(z1) = 0. In that case, the real part of bothGn(z1) and
G(z1) vanishes by symmetry (G,Gn are Stieljes transforms of symmetric mea-
sures.) Now, withGU as in [6, Section 3.1], we have, see [6, (22)],

GU (z1) =
1
4ρ

(−1+
√

1+4ρ2G(z1)2) .

By the analyticity ofG,GU along the imaginary axis, we deduce that
√

1+4ρ2G(z1)2

can not vanish and sinceG(z1) goes to zero at infinity, this implies that|ℑ(G(z1))|<
1/2. By continuity for eachε there is aδ = δ(ε) so that withz1 such thatℜ(z1) =
0,ℑ(z1) > ε, we have|ℑG(z1)| ≤ 1/2− δ. Again by uniform convergence, and
reducingδ to δ/2 if necessary, we get the same forGn andG

z
n.

Step 3.Define

C ′
ε,β := Cε,β∪{z1 : ℜ(z1) = 0,ℑ(z1) > ε}.

By Steps 1 and 2, there existδ′′ = δ′′(ε) > 0 such that

for all z1 ∈ ∪ε′′≤εC
′
ε′′,β, it holds thatℜ(1+4G2(z1)) > δ′′ (18)
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and, for alln > n0(ε),

for all z1 ∈ C ′
ε,β, it holds thatℜ(1+4(Gn)2(z1)) > δ′′. (19)

In particular, for alln> n0(ε), there is a path leading from+i∞ to any point inC ′
ε,β

along which the choice of the branch of the square-root in (10) (and its version
with no error term, see [6, Eq. (22)]) is determined by analyticity (and is the
standard one). Denote such a pathP . With this, we can improve the statement
of boundedness in [6, Lemma 13] to a convergence statement. In what follows,
even though at this stage the pathP is bounded away from the real axis (byε), we
make explicit the dependence of bounds onℑ(z1); this will be useful in Step 4.

We rewrite (12) as

G̃n(z1) = GTn(ψn(z1)) = Gn(z1)− Õ(n,z1,ψn(z1)). (20)

With

kn(z1) = ρRρ(G̃
n(z1))+ψn(z1)−z1 = ρRρ(G̃

n(z1))−
ρ2Gn(z1)

(1+2ρGn
U(z1))

,

we have
G̃n(z1) = GTn

(

z1+kn(z1)−ρRρ(G̃
n(z1))

)

. (21)

Whenℑ(z1) > 0 is large, we have thatℑ(ψn(z1)) is large, and as a consequence,
G̃n(z1) is analytic and small in this region. It follows thatkn(z1) is analytic in
that region, and goes to 0 together with its derivative asℑ(z1) → ∞. Therefore,
the mapz1 → z1+kn(z1) is invertible in a neighborhood of+i∞ with analytic in-
verse, denotedϕn(z1), which is a small perturbation of the identity there. Defining
Ĝn(z1) = G̃n(ϕn(z1)), we obtain

Ĝn(z1) = GTn(z1−ρRρ(Ĝ
n(z1))) .

Comparing with [6, Equation (29)], we get that in a neighborhood of+i∞, it holds
thatĜn(z1) = G

z
n(z1), and therefore, in that neighborhood,

G̃n(z1) = G
z
n(z1+kn(z1)). (22)

On the other hand, from (20), we have that

|G̃n(z1)−Gn(z1)| ≤ |Õ(n,z,ψn(z))| ≤
Cρ2

n2(ℑ(z1)4∧1)
. (23)
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Thus, forℑz≥C3n−1/4, by (19),

for all z1 ∈ C ′
ε,β, it holds thatℜ(1+4(G̃n)2(z1)) > δ′′/2. (24)

ThereforeRρ is continuously differentiable at̃Gn(z1),z1 ∈ C ′
ε,β and we have

|ρRρ(G̃
n(z1))−ρRρ(G

n(z1))| ≤
C

n2(ℑ(z1)4∧1)
. (25)

Moreover, in the proof of [6, Lemma 12], it was shown thatρRρ(Gn(z1))−
ρ2Gn(z1)

1+2ρGn
U (z1)

is small and analytic onC ′
ε,β providedε > n−1/4. Thus, with (24),

(25), we deduce that

|kn(z1)| ≤C20/(n3/2(ℑ(z1)
7∧1) (26)

is smaller thanℑz1/2 and analytic onC ′
ε,β providedε > n−1/7. Hence, (22) extends

to z1 ∈ C ′
ε,β providedε > n−1/7.

Therefore, again forz1 ∈ C ′
ε,β, ε > n−1/7,

|Gn(z1)−G
z
n(z1)| ≤ |G̃n(z1)−G

z
n(z1)|+ |Gn(z1)− G̃n(z1)|

= |G
z
n(z1+kn(z1))−G

z
n(z1)|+ |Gn(z1)− G̃n(z1)|

≤
C

n3/2(ℑ(z1)8)
. (27)

Step 4We bootsrap the previous estimate so that one can approach the real axis:
recall that ifSdenotes the Stieltjes transform of a probability measure supported
onR, we have that for anyx∈ R,

|ℑ(S(x+ iε/2))| ≤ 2|ℑ(S(x+ iε))| .

In particular, for allz1 = x+ iy ∈ Cε/2,β, it holds that

|ℑ(Gn(z1))| ≤ 2|ℑ(Gn(x+2iy))|

≤ 2|ℑ(G
z
n(x+2iy))|+2|Gn(x+2iy)−G

z
n(x+2iy)|

≤ 2ε′+
2C

n3/2(ℑ(z1)8)
.

In particular, for alln > n1(ε), (17) and (19) hold withε replaced byε/2.
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One now repeats Step 3, and concludes that (27) continues to hold in C ′
ε/2,β.

Iterating thisℓ times so thatε2−ℓ ≥ n−1/7(without changing furthern1(ε) or δ′′(ε))
completes the proof of Lemma 7.

We have the following corollary of Lemma 7, whose proof is identical to the
proof of [1, Lemma 5.5.5].

Corollary 8. With β,α as in Lemma 7, andϕ any smooth function compactly
supported on[−β,β],

limsup
n→∞

nα+1|E
∫

ϕdνn
z| < ∞.

In particular,
limsup

n→∞
P(νn

z([−β/2,β/2]) > 0) = 0. (28)

We have now prepared all the steps to prove Theorem 2.
Proof of Theorem 2We only need to considerz in a compact set. We begin by
noting that

P(An has an eigenvalue inB(z,ε)) = P(νz′
n({0}) ≥ 1

n for somez′ ∈ B(z,ε)) .
(29)

We writeYn(z) to emphasize the dependence ofYn in z. Let

λ∗(Yn(z)) = min{|λi(Y(z))|}.

SinceYn(z)−Yn(z′) is Hermitian and of norm bounded by|z−z′|, we have that
|λ∗(Yn(z))−λ∗(Yn(z′))| ≤ |z−z′|. Thus, for eachz 6∈ supp(µA), and withβ = β(z)
as in Lemma 7, we can find anε = ε(z) so that by Chebyshev’s inequality

P(νz′
n({0})≥

1
n

for somez′ ∈B(z,ε))≤P(νz
n([−β/2,β/2])≥

1
n
)≤Cn−α →n→∞ 0.

Combined with (29), we conclude that

P(An has an eigenvalue inB(z,ε)) →n→∞ 0.

By a standard covering argument, this implies that for any compactG with G∩
(suppµA) = /0, it holds that

P(An has an eigenvalue inG) →n→∞ 0.

This completes the convergence in probability in the statement of Theorem 2.
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We finally prove the almost sure convergence by generalizingthe ideas of [8]
based on Poincaré inequality. In our case, we shall use concentration of measures
on SU(N) [1, Theorem 4.4.27]. Since we now assume that the assumptions of
Theorem 1 hold for almost all sequenceTn, we may and will assume the sequence
Tn deterministic in the sequel. Recall that for any bounded measurable functionϕ,
∫

ϕ(x)dνz
n(x) is a bounded measurable function of the random matrixWn =U∗

nV∗
n .

We denote byEU(n) (resp. ESU(n)) the expectation overWn following the Haar
measure onU(n) (resp.SU(n)). We also write in the sequelB = (suppµA)c.

Lemma 9. Fix z∈B, α andβ as in Lemma 7, and a bounded non negative smooth
functionϕ with support in[−β,β].

1. There exists a finite constant C such that

|EU(n)[

∫

ϕ(x)dνz
n(x)]| ≤

C
n1+α . (30)

2. For all δ > 0, there exists z′ ∈ B so that|z−z′| ≤ δ and

|ESU(n)[

∫

ϕ(x)dνz′
n(x)]| ≤

C

n1+ α
2

.

Moreover there exists n0 = n0(z′,ω) so that for almost everyω and all n>
n0,

|

∫

ϕ(x)dνz′
n(x)| ≤

1

n1+ α
16

. (31)

The last point proves the theorem asAn has an eigenvalue inB(z,ε) ⊂ B for ε
small enough only if

νz′
n([−2ε,2ε])≥

1
n

for all z′ ∈ B(z,cε), for an appropriatec = c(M,z). (31) shows that this is impos-
sible forn sufficiently large, almost surely.
Proof. The first point of the lemma is a restatement of the first part ofCorollary 8.
For the second, recall that any matrixWn in the unitary group can be decomposed
asWn = eiθSn with Sn in the special unitary groupSU(n) and note that multiply-
ing Sn by eiθ amounts to rotatingz by eiθ in Hz

n. Therefore, by the Chebyshev
inequality we deduce from the first point that the setRn of θ ∈ [0,2π] such that

|ESU(n)[

∫

ϕ(x)dνeiθz
n (x)]| ≤ n−1−α

2 (32)
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satisfies|Rn|/2π ≥ 1−Cn−α/2, where|Rn| denotes the Lebesgue measure ofRn.
Thus, in any interval of widthn−α/2 in the circle of radius|z| there is at least an
element ofRn. We finally cover the compact setB ∩ [0,M] (with M as in (1)) with
a covering with meshδ/2 to obtain the existence of a family(zi)i≥0 of points ofB
so that (32) hold. Repeating this argument with the functionϕ′(x)2, we also have
that

|ESU(n)[

∫

ϕ′(x)2dνzi
n(x)]| ≤Cn−1−α

2 . (33)

Next, remark thatUn →
∫

ϕ(x)dνzi
n(x) is Lipschitz with constant bounded above

by C
(

n−1
∫

ϕ′(x)2dνzi
n(x)

)
1
2 . SetCn = {Wn ∈ SU(n) :

∫

ϕ′(x)2dνzi
n(x) ≤ n−

α
4}.

Then,
P(Cc

n) ≤Cn−1−α/4 . (34)

Consequently, using (33),

ESU(n)[1Cn

∫

ϕ(x)dνzi
n (x)] ≤Cn−1−α/4 .

Therefore, we get that for alln large enough,

P

(
∣

∣

∣

∣

∫

ϕ(x)dνzi
n (x)

∣

∣

∣

∣

≥ n−1− α
16

)

≤ P

(
∣

∣

∣

∣

∫

ϕ(x)dνzi
n (x)−ESU(n)[1Cn

∫

ϕ(x)dνzi
n(x)]

∣

∣

∣

∣

≥
1
2

n−1− α
16

)

≤ n−1−α
4

+P

({
∣

∣

∣

∣

∫

ϕ(x)dνzi
n(x)−ESU(n)[1Cn

∫

ϕ(x)dνzi
n(x)]

∣

∣

∣

∣

≥
1
2

n−1− α
16

}

∩Cn

)

≤ Cn−1−α
4 +Ce−n−2−α

8 n2n
α
2 ,

where we have applied [1, Theorem 4.4.27] to the extension ofthe functionWn →

g(Wn) =
∫

ϕ(x)dνzi
n(x) outsideCn which is globally Lipschitz with constantn−

1
2−

α
4

and uniformly bounded, see e.g. [5, Section 5.4] for the existence of such exten-
sion. Applying the Borel-Cantelli lemma completes the proof.
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