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Abstract

We study the eigenvalues of non-normal square matriceseofdim
An = U TV, with U, V, independent Haar distributed on the unitary group
andT, real diagonal. We show that when the empirical measure afitjen-
values ofT,, converges, and,, satisfies some technical conditions, all these
eigenvalues lie in a single ring.

1 The problem

In [B], M. Krishnapur and the authors considered the coreecg of the empricial
measure of (complex) eigenvalues of matrices of the f&pma- T,U,, whereUy,

is Haar distributed orti(n), the unitary group of x n matrices, and independent
of the self-adjoint matrixi,, (which therefore can be assumed diagonal, with real
non-negative entrieﬁgn)). That s, With)\i(”) denoting the eigenvalues &f, La, =
n*lz{‘zléA_(n) their empirical measure, and withy, the empirical measure of
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the entries off,, the following is part of the main result dfi[6]. Throughotdr
a probability measur@ supported orR or on C, we write G, for its Stieltjes

transform, that is (@)
[ u(dXx
Gu(z) = / 7

G, is analytic off the support gi. We writeGr, for GETn' where for any probabil-
ity measurgu on R we uselto denote the symmetrized pf i.e. the probability
measure satisfying(A) = (U(A) + u(—A))/2.

Theorem 1. Assume{Lt, }n converges weakly to a probability meas@ecom-
pactly supported ofR ;. Assume further the following.

1. There exists a constant M0 so that

fim P(Taf| > M) =0. @

2. There exist a sequence of evefi } with P(G5) — 0 and constants, & >
0 so that for Lebesgue almost ang £, with o7 the minimal singular value
of zI — Ap,

E(14,1(6zn-5)(logaf)?) < & 2)

3. There exist constanksk, > 0 such that

|0Gt,(2)| <k1 on {z:0(z) >n*}. (3)

Then L, converges in probability to a limiting probability measupg, rota-
tionally invariant in C and supported on the annulyse'® : a < r < b}, where

a=1/,/[x20(dx) and b=,/ [ x2©(dx).

The conditions of Theorefd 1 were then showed to hold in soramples of
interest, and in particular to provide a rigorous proof @& Feinberg-Zee “single
ring theorem”, se€ [3]. A version of Theoréin 1 was also prdedubld when the
Haar measure oft, was replaced by the Haar measure on the orthogonal group,
see 6, Theorem 18].

Our goal in this paper is to improve the convergence statemérheorentIL
to a statement concerning the convergence of the suppbg oThe following is
our main theorem.



Theorem 2. Assume J, U, satisfy the conditions of Theord 1 and, in addition,

assume that
1 1

[ x—2L, (dX) [x~20(dx) 7

bn = /XZLTn(dX) — b= //xze(dx). (5)

Further assume if & O thatsup, || T, %|| < c. Then, the support of4. converges
to suppa) = {z€ C: |z € [a,b]} in probability. If moreover the assumptions of
TheorenfIl hold almost surely with respect to the sequegcthd@n the conver-
gence of the support holds almost surely.

(4)

and

WhenT, is distributed as the diagonal matrix of singular values Gfimibre
matrix, the conclusion of Theorelth 2 follows e.g. from theuttssin [10].

Remark 3. Recall thaua is supported on the annulies b x [0, 2m). An elemen-
tary computation using the expression for the density- pa(r) of pa, seel[6 7],

shows that

lim pa(r) = 1 lim pa(r) = 1

r\apA a2’ r/pr T2’
It is maybe surprising that in spite of the density havingreeity positive density
at the boundary, the eigenvalues still stick to the boundary

1.1 Background and description of the proof

We recall that the main difficulty in studying the ESL}, is thatA, is not a
normal matrix, that if\\A, # AAn, almost surely. For normal matrices, the limit
of ESDs can be found by the method of moments or by the meth&dieltjes’
transforms. For non-normal matrices, the only known metbigaroof, which is
the one followed in[B], is more indirect and follows an iddaGirko [4]. We
recall the general outline and some crucial steps whichbgitheeded in the proof
of TheoreniR.
Introduce the A x 2n matrix

0 zl— A



LetvZ denote the ESD dfiZ,

1 1 _
ﬁdvﬁ(x) = %tr (y-H®)H ™,

then, seel6, Eq. (7)],

[v@dLa@ / 2) [ log avi()dm). @)

The main advantage of this formulation is that one can redutsntion to the
study of the ESD of matrices of the for(T +U)(T +U)* whereT is real di-
agonal andJ is Haar distributed. In the limit (i.e., wheh andU are replaced
by operators in £*-algebra that are freely independent, witlbounded and self
adjoint andJ unitary), the limit ESD has been identified by Haagerup anddma
[7]. The Schwinger-Dyson equations give both a charac®oz of the limit
and, more important to us, a discrete approximation thabeansed to estimate
the discrepancy between the pre-limit ESD and its limit. Seheill play a crucial
role in the study of the support.

Notation

We describe our convention concerning constants. Thrautgbhyg the wordcon-
stantwe mean quantities that are independent @r of the complex variablez
z1). Generic constants denoted by the let@i& ¢, have values that may change
from line to line, and they may depend on other parametersistaats denoted
by Ci, K, M, k andk’ are fixed and do not change from line to line.

2 Preliminaries: evaluation of v and convergence
rates

We quickly recall the analysis inl[6], assuming throughdaitt| T,|| is uniformly
bounded by a constaM < «. Fix z< C and writep = |z|. With

0O u 0O B
UI’\:(O 6\)7YHZ(B* On)7 (8)
n



whereB,, = pUn + Ty, T, a real, diagonal matrix of uniformly bounded norm and
Un a #, unitary matrix, define

G'(2) =El,ctr((z-Yn) )], Gr() =G"@lp-o
and 1
Gl (2) = E[otr (Un(z—Yn)™)].

Then, seel[6, Eq. (35)], the finiteSchwinger-Dyson equations for this problem
give

p(G"(z1))? = 2G) (z2) (1+2pGf} (z1)) — O1(n, 1), 9)
where
O1(n,z1) = 4E {(z—lntr — E[Z—lntr]) ® (z—lntr — E[2—1ntr])6(21 —Yn) U,

p2
- O(HZD(Zl)Z(D(Zl)Al))'

In particular, we have

GB (Z]_) = 4—];)(—14- \/1+4p2G”(21)2+401(n,21)) , (20)

with the choice of the square root determined by analytiitgt behavior at infin-
ity. Further, if one defines

p°G"(z1)

=Un(z1) =2~ 152060 (2)) (11)
then, seel[6, Eq. (39)], for ath with 0(z2) > 0 given by [11),
G"(z1) = Gr,,(Wn(z2)) — O(n, z1, Yn(2z2)) (12)
where 20( )
- o N,721,2
M2, 2) = (1 2060 ()
and o2
|0(n,z1,2)| < P

~ m?0(z)|0(z2)2(0(z) A1)

In particular, fordJ(z;) large, it holds thaG"(z;) andG[j (z1) are small, implying
that z, is well defined with(J(z) > 0. This leads (see [6, Lemma 10]) to the
following weak convergence statement.
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Lemma 4. If L1, converges weakly in probability to a probability meas@ghen
for any ze C, v{ converges weakly in probability tf = OHA ;.

(Recall tha® is the symmetrized version &.)

The main work in[[B] is then to use the Schwinger-Dyson equia{l2) and
deduce enough a-priori bounds that allow one to integraédtparithmic singu-
larity in ([@). While we will make use of some of these boundshés point we
return to our goal, which is to prove Theoréin 2.

3 Convergence of the support - proof of Theoreml|2

Throughout this section, we are in the setup and assumptiohlseoren{2. We
first consider the statement concerning convergence inapility. Recall that
supfpa) = {z€ C: |7 € [a,b]}. Since the density gia is positive on its support,
see(6, Remark 8], we only need to prove that ¢ suppa) then there exists an
€ = £(2) > 0 so that, withB(z €) denoting an open ball it centered ar with
radiuse,

P(Lay(B(€)) # 0) —n—co 0.

LetVj = Az B Ly, (i.e.,V; denotes the free convolution Af, with the sym-
metrized empirical measure ®). SinceLt, — © weakly, we have thai;, — v?
weakly. WriteG;, for the Stieltjes transform of2. Then,G/(-) converges to the
Stieltjes transform 06, which is denoted in the sequel B(-).

The first observation we make reduces the study of the suppdrt, to a
question concerning.

Lemma 5. For each zZ supfdpa) there exists am = €(2) so that\_zﬁ(B(O,e)) =0
if |z—Z| < ¢, for all n large.

Before bringing the proof of Lemmid 5, we provide an a-pricgiiraate on
the spectral radius of certain operators. Throughout, veer (5) to denote the
spectral radius of an operat&r. We use the convention thgt || denotes the
operator norm and - || the Hilbert-Schmidt norm. An operatdr in a non-
commutative probability space is callBddiagonaiff it has the same distribution
asUH with U unitary,H positive, and the algebras generatedbyU *) andH
freely independent, seg |7, 9].



Lemma 6. Let A B be elements of a non-commutative tracialobability space.
Assume that A is R-diagonal and that there exists a consgancso that||A||, ||B|| <
Co. Then, for eacle > 0 there there exists an = n(cp, €) > 0 so that

r(A+nB) < ||All2+¢.
(The casey = 0 of the lemma is[[7, Proposition 4.1].)

Proof. Recall thatr(A+nB) = lim |[(A+nB)"|¥". By [, Corollary 4.2], we

have thaf|AP|| < (1+ p)C||AH2_1. Therefore, using the sub-additivity of norms,
we have, wittCp = ||(A+nB)"

n—1
Co < [IA"|+ > IA|- InB|-Cr-k-1, (13)
k=0
whereCgo = 1.

Fory > 0, setG(y) = Y ~1Y'Cn. ClearlyG(y) < o for y small enough, and
r(A+nB)~1 = supfy: G(y) < «}. Further,G(-) is analytic on[0,r(A+nB)~1).
Define alsaF (y) = 3 -1 Y (1+n)||A|5~* and note thaF (y) < c whenevely <
|A]|, 1. From [I3B) we get that whenevex(y) < o,

co n—1

_ k—1)v0
G(y) <CY_ V' @+n)Al3+ niCe Y V"> (1+KIIAIY Y Ch i1
n>1 n=1 k=0
(14)

Rearranging, we have that the second sum in the right sidBdp®Qquals

00 n—-1

D VD (@+K)[IA [ PVOC, 4

n=1 k=0

= > [IAg* YO+ 1Y Y T yRIC,
k=0 n=k+1

- y<1+2||A2||k-1<k+1>vk> (1+G(y)).

k=1

It follows that
G(y) <CF(y) +Cony(1+F(y))(G(y) +1).
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Therefore, for ally with G(y) < e andF (y) < oo,

(1-Caony(1+F(y)))G(y) <CF(y) +Caony(1+F(y)).

It follows that fory = (||Al|2+€)~* there exists an = n (g, cp) so thatCeony(1+
F(y)) <1/2 and therefor&(y) < . This implies the statement of Lemifda 61

We can now provide the proof of Lemrh 5.

Proof of Lemmé&l5Recall thawﬁ = I:Tn Bz, see Theoreid 1, and thus possesses
the same law aX +Y,, whereX, Y, are freely independent in a non-commutative
probability space, the law of is that of a Bernoullit-|Z| variable, and the law of

Y, beingL. .

Assume first thalz| > b. We may and will assume that for sode- 0, |Z| —
bn > 6 > 0 for all n large, uniformly inZ with |z— Z| < €, and consider only such
n, € andd. We need to check that there exists&rsuch that for alljn| < €/,

X4 Y, —nl is invertible. WritingX + Y, —nl = X(I +X~1(Y,—nl)), we see that
X+ Yy —nl is invertible iff | + X~1(Y, —nl) is invertible. A sufficient condition
for that is thatr (X ~1(Y, —nl)) < 1. Since||X~Y|| < |Z|~t and||Ya]| is uniformly
bounded, and sincé~1Y, is R-diagonal with

X" Mall2 < X H2ll¥all2 = 1Z] HI¥all2 = 12 *n < T < 1
for some fixed, = {(b, €, ), the conclusion follows from an application of Lemma
B with A= X"1Y, andB=X"1.

Similarly, if |z € [0,a) (with a > 0) and||Y; || is uniformly bounded, we
repeat the argument, this time writing+ Y, — nl = Yo (I + Y, 3(X —nl)), and
then using

1Yo H2lX 2= 1Z1/an < T < 1.

Let
A4 ={z:3¢>0,V5(B(0,¢)) =0, for all nlarge}.

Our next step is to prove a control @¥(-) for ze 4.

Lemma 7. Fixze 4, z# 0. Let3 > 0 be such that for somearge enough,

[—2B,2B] & (Un=n,SUppy) -
Then, there are constantsy, p > 0 so that for all n large and for all z with
O(zz) >nYandO(z7) € [-B,B],
1

n =Z
G (z1) —Gp(z)| < ntraf(z)P

(15)



Proof. The proof is divided into several steps. The idea is to usgt(l2ompare

G" and@f]. To do this up to a small neighborhood of the real axis, an mand
point is to show tha@G" andéf, do not cross the cut of the square root which enters
in the definition ofR,. The latter point is first shown at a positive distance of the
real axis and then a bootstrap argument is used to approachdhaxis.

Step 1.Introduce the set

CGp={z:0(z) € [g,2¢),0(z) € [-B,Bl}-

Since[—B, B] & supm?, we have thatl(G;,(x+i0)) = 0 for x € [-B,B]. More-
overGﬁ is uniformly Lipschitz onUgr<¢ Ger g (With constant only depending on
the distance froni—p, ] to supw}, which is uniformly bounded below b§ by
hypothesis). Therefore, for any fixet{= B~2¢) (whose value can be taken to be
1/12 in what follows) we can choogesmall enough such that

for all z; € Ugr<g G g, it holds thatl(Gp(z1)) < €, O(G(z1)) <€.  (16)

By the convergence @" to G (which follows from the weak convergencelof,
to py, see Lemmal4), which can be made uniform by uniform conyyrwit G g,
and replacing’ by 3¢’ if necessary, we get that for all> np(¢),

for all z € G g, it holds thatJ(G"(z1)) < 3¢'. (17)

Step 2.Considerz; with J(z;) = 0. In that case, the real part of ba#i(z;) and
G(z1) vanishes by symmetry@, G" are Stieljes transforms of symmetric mea-
sures.) Now, withGy as in [6, Section 3.1], we have, séé [6, (22)],

Gu () = 4—1p<—1+ J11402G(2)2).

By the analyticity ofG, Gy along the imaginary axis, we deduce théi+ 4p%G(z71)2
can not vanish and sin€&z; ) goes to zero at infinity, this implies thial(G(z;) )| <
1/2. By continuity for eacle there is & = &(¢) so that withz; such thatl(z) =
0,00(z1) > €, we have|lG(z1)| < 1/2—&. Again by uniform convergence, and
reducingd to &/2 if necessary, we get the same @t ande].

Step 3.Define

Gp=GpU{z1:0(z1) =0,0(z1) > &}.
By Steps 1 and 2, there exi8t = 8" (¢) > 0 such that
for all z € Ugr<e Cly g, it holds that] (1+4G%(z1)) > & (18)
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and, for alln > ng(¢),
forall z € C 5, it holds that ) (1+4(G")?(z1)) > &". (19)

In particular, for alln > ng(€), there is a path leading fromico to any point inC€’7
along which the choice of the branch of the square-roofi) (40d its version
with no error term, see [6, Eq. (22)]) is determined by aneityt (and is the
standard one). Denote such a pdth With this, we can improve the statement
of boundedness in [6, Lemma 13] to a convergence statementhat follows,
even though at this stage the p&tls bounded away from the real axis (by we
make explicit the dependence of boundd.dm; ); this will be useful in Step 4.

We rewrite [1R) as

G"(z1) = Gr, (n(z1)) = G"(z1) — O(n, z1, Yn(z1)). (20)
With
- - 20N
kn(z1) = PRo(G"(z1)) + Wn(z1) — 21 = PRy (G"(z1)) — 1 _EZGpG(El()Zl)) ’
we have N N
G"(z1) = Gr, (z2+kn(z1) — PRo(G"(z1))) - (21)

When[(z;) > 0 is large, we have thai(n(z)) is large, and as a consequence,
G"(z1) is analytic and small in this region. It follows thig(z;) is analytic in
that region, and goes to 0 together with its derivativélég ) — «. Therefore,
the mapz; — z +kn(z1) is invertible in a neighborhood afic with analytic in-
verse, denotedl(z1), which is a small perturbation of the identity there. Defgin
G"(z1) = G"(dn(z1)), we obtain

G"(z1) = Gr,(z1— PRo(G"(22)))..

Comparing withl[6, Equation (29)], we get that in a neighlwarth of +ic, it holds
thatG"(z1) = G/,(z1), and therefore, in that neighborhood,

G"(z1) = Gp(z + kn(z0)). (22)

On the other hand, froni.(P0), we have that

1G"(z1) — G"(z1)] < |O(n, z, Yn(2))| < Cp?

Sewiy @
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Thus, for0z > Czn~Y/4, by (19),
for all z1 € 5, it holds that) (1 + 4(G")?(z1)) > 8"/2. (24)
ThereforeR, is continuously differentiable ﬁ”(zl),zl € Cs’ 5 and we have

C

|pRp(é‘n(Zl>) — PRy (G"(z0))| < W' (25)

Moreover, in the proof of[]6, Lemma 12], it was shown thpR,(G"(z1)) —
%L% is small and analytic or; ; providede > n—Y4. Thus, with [2%),

3), we deduce that
[kn(z1)| < Cao/ ("**(D(21)" A1) (26)

is smaller thariz; /2 and analytic orz[‘é.B providede > n~1/7. Hence,[[2R) extends
toz € ¢ g providede > n-1/7,
Therefore, again for; € ([ g, € > n—1/7,

G"(z1) - Gr(z)] < [6"(z1) —Gn(z)| + G (z1) — G'(2a)
= |Gz +kn(z1)) — Gp(2u)| +(G"(z1) — G"(22)
C

S EGEALE

(27)

Step 4We bootsrap the previous estimate so that one can approachahaxis:
recall that ifS denotes the Stieltjes transform of a probability measuppsrtied
onR, we have that for any € R,

|O(S(x+ig/2))| < 2|0(S(x+ig))].
In particular, for allzy = x+1y € G2, it holds that

|0(G"(z2))] 2|0(G"(x+2iy))|
2|0(Gh(x+ 2iy))| + 2|G"(x + 2iy) — G (X + 2iy)]
2C

n¥2(0(z1)8)

ININA

2¢' +

IN

In particular, for alln > ny(¢), (I4) and [(IB) hold witte replaced bye/2.
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One now repeats Step 3, and concludes fhat (27) continuaesidarh s//2 5

lterating this/ times so tha¢2—* > n—1/7(without changing furthen; (€) or & (g))
completes the proof of Lemniia 7. O

We have the following corollary of Lemnid 7, whose proof isntieal to the
proof of [1, Lemma 5.5.5].

Corollary 8. With B,a as in Lemmdl7, ang any smooth function compactly
supported on—f, B,

Iimsupn“*l\E/d)va\ < o0,
n—oo

In particular,
limsupP(vz([-B/2,p/2]) > 0) = 0. (28)

Nn—oo
We have now prepared all the steps to prove Thediem 2.
Proof of Theorem[2 We only need to considerin a compact set. We begin by
noting that

P(A, has an eigenvalue i&(z €)) = P(VZ ({0}) > % for someZ € B(z¢)).
(29)
We write Y (2) to emphasize the dependencergfin z. Let

A (Yn(2)) = min{[Ai(Y (2))[}.

SinceYn(2) — Yn(Z) is Hermitian and of norm bounded by— Z|, we have that
IN*(Yn(2)) —=A*(Yn(Z))| < |z—2Z|. Thus, for eaclz & supdpa), and withB = 3(2)
as in Lemmal7, we can find &n= £(z) so that by Chebyshev’s inequality

Sl

P(VZ({0}) > % for someZ € B(z,€)) <P(VA([-B/2,B/2]) > =) <Cn ® —p . 0.
Combined with[(ZB), we conclude that
P(An has an eigenvalue iB(z,€)) —n— 0.

By a standard covering argument, this implies that for ampactG with GN
(suppa) = 0, it holds that

P(An has an eigenvalue iB) —n_. 0.

This completes the convergence in probability in the statgrof Theorenil2.
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We finally prove the almost sure convergence by generalitiagdeas ofi[8]
based on Poincaré inequality. In our case, we shall useeodration of measures
on SU(N) [1, Theorem 4.4.27]. Since we now assume that thengssons of
Theorentll hold for almost all sequentg we may and will assume the sequence
T, deterministic in the sequel. Recall that for any boundedsuedble functiorp,

[ $(x)dvi(x) is a bounded measurable function of the random méliix UV
We denote b)EU (resp. Esy(n)) the expectation ovet, following the Haar
measure ortl(n) (resp.SU(n)). We also write in the sequét = (suppua)°.

Lemma 9. Fix ze B, a andf3 as in Lemmal7, and a bounded non negative smooth
function¢ with support in[—, B].

1. There exists a finite constant C such that
C
Euinl | 009X < o (30)

2. Forall d > 0, there exists’z= B so that|z— Z| < d and

Esu] / B(X)AVE (x)

Moreover there existson= ng(Z, w) so that for almost everg and all n>

No,
1
ol < e

The last point proves the theoremAshas an eigenvalue B(z €) C B for €
small enough only if

(31)

V2 ([—2¢, 2€]) >

Sl

for all Z € B(z cg), for an appropriate = ¢(M, z). (31) shows that this is impos-
sible forn sufficiently large, almost surely.

Proof. The first point of the lemma is a restatement of the first pa@abllary(3.
For the second, recall that any matvik in the unitary group can be decomposed
asW, = €953, with S, in the special unitary groupU(n) and note that multiply-
ing S, by €% amounts to rotating by €° in HZ. Therefore, by the Chebyshev
inequality we deduce from the first point that the Rgof 6 € [0, 217 such that

|[Esum) / (Ve 2] <n i3 (32)
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satisfiegR,| /2> 1—Cn~9/2, where|R,| denotes the Lebesgue measur&gf
Thus, in any interval of widtm=%/2 in the circle of radiugz| there is at least an
element oRR,. We finally cover the compact s&n [0, M] (with M as in [1)) with
a covering with mesB/2 to obtain the existence of a familg )i>o of points of B
so that[3R) hold. Repeating this argument with the funcfign)?, we also have
that

Esu] / o' (x)2ava (x)]| < Cn % (33)

Next, remark that, — [ ¢(x)dva(x) is Lipschitz with constant bounded above

1
by C( —1f¢ )2dva (X ))7 SetCh = {Wh € SU(n) : [¢'(x X)2dvZ (x) < n—z}
Then,

P(Cﬁ) < Ccn~i-a/4, (34)

Consequently, using (B3),

Esumllc, / B(x)dv (x)] < CnL-a/4.

Therefore, we get that for ati large enough,

P(‘/q)(X)dVﬁ(x) >n11%>
PW(I) JNA0) ~Esun 1cn/¢ xdva (x| >

< nl3a

+p<{‘ [ 600800~ Esu i, [ 001V ()

2
< cntiqcen Brd

IN

1 , a
> on 1 16}ﬂCn)

where we have appliedl[1, Theorem 4.4.27] to the extensidmeofunction\, —

= [ $(x)dvi (x) outsideC, which is globally Lipschitz with constamt 2~
and unlformly bounded, see e.@l [5, Section 5.4] for theterie of such exten-
sion. Applying the Borel-Cantelli lemma completes the fproo 0J
AcknowledgementThis paper was written while both authors participated & th
2010 MSRI program on random matrix theory, interacting iprtsystems and
integrable systems. We thank MSRI for its hospitality.

14



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Anderson, G. W., Guionnet, A. and Zeitouni, @n introduction to random
matrices Cambridge University Press, Cambridge (2010).

Brown, L. G., Lidskii's theorem in the type Il casén “Proceedings U.S.—
Japan, Kyoto/Japan 1983”, Pitman Res. Notes. Math128&r.1-35, (1983).

Feinberg, J. and Zee, ANon-Gaussian non-Hermitian random matrix the-
ory: phase transition and addition formalisuclear Phys. B501, 643—
669, (1997).

Girko, V. L., The circular law Teor. Veroyatnost. i PrimeneB9, 669—-679,
(1984).

Guionnet. A,Large random matrices: lectures on macroscopic asymysotic
Lecture Notes in Mathematid®57Lectures from the 36th Probability Sum-
mer School held in Saint-Flour, 2006, Springer-Verlag.

Guionnet, A., Krishnapur, M. and Zeitouni, OThe single ring theorem
arXiv:0909.2214v2 (2009).

Haagerup, U. and Larsen, Byown’s spectral distribution measure for R-
diagonal elements in finite von Neumann algebthg-unct. Anal2, 331-
367, (2000).

Haagerup, U. and Thorbjgrnsen, Snew application of random matrices:
Ext(C,4(F2)) is not a group Ann. of Math. (2)162 711-775, (2005).

Nica, A. and Speicher, R -diagonal pairs —a common approach to Haar
unitaries and circular elementgields Inst. Commuril2, 149-188 (1997).

Rider, B.,A limit theorem at the edge of a non-Hermitian random matrix
ensemblgl. Phys. A36 (2003), pp. 3401-3409.

Voiculescu, D.,Limit laws for random matrices and free produdteen-
tiones Mathematica®04, 201-220, (1991).

15



	The problem
	Background and description of the proof

	Preliminaries: evaluation of z and convergence rates
	Convergence of the support - proof of Theorem ??

