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Abstract

We consider (discrete time) branching particles in a random envi-
ronment which is i.i.d. in time and possibly spatially correlated. We
prove a representation of the limit process by means of a Brownian
snake in random environment.

1 Introduction

1.1 Superprocesses in random environments

Superprocesses in random environments were introduced in [10] as the scal-
ing limits of particle systems whose branching are affected by random en-
vironments. In particular the limiting behavior of the following model has
been studied. At time ¢t = 0, K,, ~ n particles are located in R?. Each
of these K, particles follows the path of an independent Brownian motion
until time ¢ = 1/n. At time 1/n each particle independently of the others
either splits into two or dies and then the individual particles in the new
population again follow the paths of independent Brownian motions starting
at their place of birth, in the interval [1/n,2/n), and the pattern of alter-
nating branching and spatial spreading continues. Let us describe in details
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the branching mechanism that was suggested in [10]. Let {£x(-)}x>0 be a
sequence of i.i.d. R%indexed random fields with mean 0 and covariance

g(z,y) = Cov(&k(x), &(y)), =,y €RE

At time k/n each particle, independently of the others conditionally on &,
either splits into two with probability

1 1
B + mfk(x)
or dies with probability

- L),

1

2 2n
where z is the location of the particle. That is, the fields {{;}r>0 create
the random environment that affects the branching of the particles. Define
the following measure-valued process that describes the evolution of the

population:

X7(A) = number of particles in A at time t’ AR (1.1)
n

Before proceeding we introduce some notation. For a locally compact Polish
space E, let Mp(E) (respectively, M(E)) be the space of finite (respectively
Radon) non-negative measures on E, equipped with the weak (respectively,
vague) topology (see Section 3.1 in [3]). In the case of E = RY, we will
also write Mp = Mp(R%) and M = M(R?). Both u(¢) and (¢, 1) denote
the integral of a function ¢ with respect to measure py. For any metric
space E let Dy = Dg[0,00) (resp. Cg = Cgl0,00)) be the space of cadlag
(resp. continuous) E-valued functions on [0, c0) endowed with the Skorohod
topology. Let C*(R?) (resp. CFF(R?)) be the set of continuous (resp. bounded
continous) functions with continuous (resp. bounded continuous) partial
derivatives of order k or less. Also we define B(R%) to be the set of bounded
measurable functions on RY.
It was shown in [10], under some additional technical assumptions on &,

that if

X67'2>X0 = U, in Mp,
then

X" =X, in D, [0,00) .
Here X is a process in Caq,[0,00) which is the unique solution to the fol-
lowing martingale problem: V ¢ € C2(R%),

t

is a continuous martingale with quadratic variation process

(), = [ oty -,
* /Ot /Rd /R L 9(2,9)¢(2)$(y) X (d2) X (dy)ds, > 0.
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In this paper we introduce some minor changes into the above model.
Instead of the binary branching we assume that each particle gives birth
to a number of particles distributed according to the geometric distribution

with parameter % — ﬁfk(m); that is, if IV is the number of offspring of the

particle located at = at time k/n, then

PV =) = (5+ 1260 (5 18@). m=012.. 0

In particular, conditioned on the environment £, the expected number of
offspring of a particle at = at time k/n is

1 1
3t omie(T) 1 1 ) 1
T olam L YR el o () (1.5)

Compared with [10], we also allow & to be slightly more general, that is,
we assume that {{,(-) }i>1 = {£7(-) }e>1 is a sequence of i.i.d. random fields
with mean v/y/n, for some v € R, and covariance

g(xvy) = Cov(fk(x),fk(y)), T,y € Rd' (16)

Let X™ be defined for this model as in (1.1). By the same argument
as in [10] one can prove that the limit of {X"},,>1 is the solution to the
following martingale problem: V ¢ € CZ(R%),

L[ _
M = (600) — ()~ 5 [ (X080 4 (X /20 ds, £
(1.7)
is a continuous martingale with quadratic variation process

<M¢>t - 2/0 <X57¢2>d5 (1.8)
* /Rd /Rdg(%y)éb(x)@b(y)Xs(da:)XS(dy)d37 £>0
where g(x) = g(z, ).

1.2 Brownian snake

The main purpose of this paper is to study the Brownian snake representa-
tion of the process that solves the above martingale problem (1.7-1.8). For
a nice introduction into the topic the reader is referred to [9]. The classical
Brownian snake was used to study different properties of super-Brownian
motion. Loosely speaking if {Ws}s>0 is a Brownian snake then for each
s > 0, W, is a stopped Brownian path. To be more precise we call the
pair w = (w, ) € Cga0,00) x Ry a stopped path in R? if for each t > ¢,
w(t) = w((). (is called the lifetime of the path w and sometimes is denoted



by Cw or ¢(w). Let W denote the space of all stopped paths in R? equipped
with the distance

d(w,w') = sup [w(t) = w'(t)] + |¢w — Curl.
>0

We will also use the notation w = w((,) for the terminal point of w. For
any € R? we denote by Z the path with lifetime 0 constantly equal to .
If w = (w,() is a stopped path then with some abuse of notation we will
sometimes set w(s) = w(s) for any s > 0.

The usual Brownian snake can be thought of as a limit of the so-called
discrete snakes that we will now define. Let {Yk"/nQ}k:(),Lm be a rescaled sim-
ple random walk on Z, /n reflected at the origin, that is, the time between
the steps is 1/n? and the size of the jump is £1/n with equal probabilities.
Explicitely,

1.
P(}/}2+1)/n2_yk7>n2:i1/n) = 5, lfYkn/nQZl/n, ]{,‘:0’1"”’
1

}/'(7];_1_1)/“2 n, if Ykn/nQ = 0, k= 0, 1, R

We also let Y be constant between the jumps. The process Y is called
the contour or lifetime process of the discrete snake W”. That is for each
s > 0, the snake W7 = (W2, Y") is a stopped path with life time Y*. We
next define the paths of the snake. Fix z € R% and set

Wy = z.

Let m1,79, ... be a sequence of independent Brownian paths stopped at time
1/n, independent of the contour process. Let W} /n2 = (W} Jn2) k”/nQ) be

the stopped path at time k/n? with lifetime CWZ/ Y, /n2 Then define

—~

wi = d WA = 1m) Yy e = k/ 2= 1/m,
(k+1)/n Wk/nQ ®77k(')7 if Yv(kJrl)/n2 - Ic/n2 + 1/n’

where 1771 ©12 denotes the concatenation of two paths 71 and 72 in the obvious
way. In words, if the lifetime Y™ goes down by 1/n we erase the path of the
snake from the tip by 1/n, or to put it differently, we reduce its lifetime by
1/n. If Y™ goes up by 1/n we add the path 1 to the tip of the snake. Then
we define

(e+1)/m2 () = (Wii1) 2 (s Yieqay 2 ()-
This way we constructed a sequence of discrete snakes. As is the case for Y,
we define W7 () = W”fsn2 | /n(-). The sequence of processes W™ converges,
as n — 00, to a continuous time Brownian snake (see e.g. Proposition 2.2
in [8]).
We next describe the connection between the snake process and the
branching Brownian motion. Define the discrete version of the local time as



Figure 1: Geneology of the particle system (left) and contour process (right).
In this picture, 711’0 = 23, 721’0 = 33 and Ti’l = 26.

the rescaled number of upcrossings of Y” from the corresponding level:

Lsn?]
E’;’wm/n = n—l Z 1Y¢T/LnQ:m/n’Y(Z-l)/n?:(m—’—l)/n' (1.10)
i=0
We also define, for ¢ > 0,
g?,t — g;%Lth/n‘ (1.11)

Since s — (2" is increasing we define the measure ¢"*(ds) in an obvious
way. In fact this convention will be used throughout the paper: for any non-
decreasing function r — f, on Ry, f(dr), with a slight abuse of notation,
will denote the corresponding measure defined via f((a,b]) = f, — fa, for
any b > a.

For any a > 0 introduce the inverse local time at level a as

1
T = = inf{k : KZ’/‘:]Q >r}. (1.12)

For any a > 0 and 1 < ro define the measure valued process XZ’t”’TQ SO
that, for ¢ € B(RY)

Xpe) = [ emnemetds) . tze (113)
Trl’

It is easy to see that X:}:/I;ZTQ,
constructed in the previous section starting at “time” a, = |an|/n such
that

k > |an], is the measure-valued process

XMrir2 (1) = XLr2(1) = py — 1y,

a,an Qn,0n



and therefore
X = Xgl", (1.14)
where X, solves the martingale problem starting at time a such that
Xplr(1) =re —m

and, V ¢ € Cg(Rd),

a,t

M¢’ = <X‘:,1t7r2>¢> _ <Xg71ér2’ _ _/ <Xr1,r2 AQS t > a, (1'15)
is a continuous martingale with quadratic variation process

t
(M), = 2/ (X0 ¢%)ds,  t>a (1.16)

1.3 Our model

We finally define the discrete snake in random environment corresponding
to the branching processes in random environment described in Section 1.2.
The main difference with the “fixed environment” case is that here the snake
cannot be constructed conditionally on the lifetime process. Both processes
have to be constructed simultaneously.

The environment {&(-)}r>0 = {&(-) }x>0 is assumed to consist of a se-
quence of i.i.d. random fields, satisfying |} (z)| < v/n/2 and sup,, E(|&F (z)[?) <
00, with mean v//n, for some v € R, and covariance g(z,y) as in (1.6), with
Illoo < o

Now define the snake with lifetime processes W = (W™ Y™") as fol-
lows. Fix a constant K; > 0. Let Y’ = 0 and Wiy = z with =z € RA.
Suppose we are given (WZ/nQ, Yk/nQ) for some k > 0. (W?kJrl)/nQ,Y(’zH)/ng)
will be defined as follows. If V7 » ¢ {0, K1}, then conditionally on ¢ and
(Wf/n% l7n2)’l < k we set

n n n 1 1 .
P (Y<k+1)/n2 = Yine = £1/nl8 Wig2, Ve, U < k) EREW (Wn*%) :

where we introduced above the notation for the “tip” of the snake:

Wy = WP (Y,g;nQ) .

If Yk’} , = 0, then with probability one we set Y(k H)jn2 = =1/n. If Yk”/n2 =
K7, then with probability one we set Y(k+1)/n2 K; — 1/n. (That is, the
process is reflected at height K7; a similar approach of introducing a super-

critical branching mechanism via a reflection of the lifetime process was used
by J.-F. Delmas in [4].)



Remark 1.1 With our assumptions, it is easy to see that the m-th moment
(for any m > 2) of the absolute value of the expected (conditioned in the
environment) number of offspring minus 1 of a particle at x at time k/n,
see (1.5), is bounded by Cy,/n, for an appropriate constant C,,. Moreover,
the absolute value of the first moment of the number of offspring minus 1 of
a particle at x at time i/n, see (1.5), is bounded by C1/n, for an appropriate
constant C1.

Let m1,m2, ... be a sequence of independent Brownian motions stopped
at time 1/n. Given the evolution of the lifetime process Y™ until time
(k+1)/n?%, the path of the Brownian snake W at time (k +1)/n? is defined
exactly as in (1.9).

We next explain the connection between the snake and branching parti-
cle system in random environment which is analogous to the connection that
exists between the processes in a constant environment. Define the rescaled
local time /2" for Y™ as in (1.10), (1.11) and the inverse local time as in
(1.12). For any 71,72 > 0,a > 0, we define the measure-valued process in
the same way as it is done in (1.13):

n,a

Xgi " (e) = /TQ (WL (Y1) (ds), t>a, (1.17)

n,a
1

for all ¢ € B(RY). This process characterizes the branching particle picture
in random environment with offspring distribution given by (1.4) and start-
ing with |(ro — r1)n] particles at the site z € R? at time t = a. In the case
of r1 =0,79 = 7,a = 0, we will use the notation

Xo7 = X', t>0, (1.18)

for the corresponding process.
The following is our first main result.

Theorem 1.2 Fiz K; > 0. Then the sequence of processes {W"},>1 =
{(W™, Y™ },>1 is C-tight in Dyy. Let W = (W,Y") be an arbitrary limiting
point, let £* be a local time of Y at level a and let 7%(r) be the inverse of the
local time. Fizx an arbitrary r > 0. Then

X7 () = / T G(W)(ds), ¢ € BRY, t € [0, K], (1.19)

is a measure-valued process satisfying the martingale problem (1.7-1.8) on
[0, K1), with X§ = 1.

In the particular case of a spatially “smooth” random environment we
can give another description of the snake process. It is easy to check from
our assumptions on £" that if we define

[sn]
B (x) = % 3 ena), (1.20)
=1



then
B™ — B,

Bu(y) - . . . o
where 2 5t(y) is a Gaussian generalized noise on Ry x RY, white in time and

colored in space, such that

E(B,(x)) = tv, Yt >0,

o (2. 252

= 50(t - S)Q(ma y)v
BO = 07

where dg(-) is the Dirac measure at 0. Given the result on the tightness of
{W"},>1, one can easily deduce that the pair {(W", B")},>; is tight. In
what follows we assume that (W, B) is a limit point of the tight sequence
{(W"™, B")},>1, and we recall that W = (W,Y).

Our aim is to introduce a particular functional of the limiting snake
that has a simple semimartingale decomposition. The definition of the func-
tional is motivated by the one used by Dhersin and Serlet [5] and also by
a functional used to transform Brox’s diffusion into a martingale, see [13].
For w € W, let

C(w)
o= [,
0
Our second main result is the following.

Theorem 1.3 Fiz K1 > 0. Assume that B € Cpa(gay[0,00), a.s.. Then
there exists a Brownian motion (8 such that

t - 1 . 1N/ 0 -\ 2
F(Wt) = / e_BYs(WS) {—§ABY9(WS) —|— 5 Z <8[L‘BY9(WS)> dS
0 i=1 v
t . t .
+09 — / e~ Bra(Ws) gKi(gg) + / e BrsWs) g (1.21)
0 0

Remark 1.4 The first term on the right side of (1.21) can be written as

t
1 — T
/ §Axe By, ( )|$:Ws dS,
0

and it comes from the fact that Wg(+) is a Brownian path.

Note that in the case of constant function g, for every s, Bs(+) is a constant
function in space, and hence we immediately have the following corollary,
which for simplicity we state only in case v = 0.

Corollary 1.5 Let g =1 and v =0. Then Y is the Brox diffusion reflected
at 0 and Kj.

See the appendix for the definition of the Brox diffusion.



1.4 Structure of the paper

In the next section, we derive some standard estimates on survival probabil-
ity for branching processes in a random environment. Section 3 is concerned
with the proof of tightness of the contour process. (Because of dependence
through the environment, natural arguments involving stopping times such
as Aldous’ tightness criterion cannot be applied directly, and extra care has
to be employed in separating dependence on the level of the contour pro-
cess from dependence on the lifetime of the process.) Most of the work
is devoted to proving that large upward jumps of the contour process are
unlikely; downward jumps are then handled by a time reversal argument.
Section 4 is devoted to the proof of tightness of the snake process and its lo-
cal time, and a completion of the proof of Theorem 1.2. Section 5 is devoted
to the description of the snake provided in Theorem 1.3, while the appendix
is devoted to the description of the contour process for environments with
no spatial dependence, providing in particular a direct proof of Corollary
1.5, that bypasses the need to consider the Brownian snake.

Notation Throughout, C, K denote generic constants whose values may
change from line to line. Numbered constants (such as K7, ¢, Cy,, d4.2, etc.)
are fixed and do not change throughout the paper.

2 Asymptotics for survival probability and useful
bounds

We start with a lemma that describes the asymptotics for survival probabil-
ity for classical branching processes. For any n > 1let {M*,l =0,1,2,...}
be the branching process with geometric offspring distribution with param-
eter

p=1/2—-0b,/4n

for some b, € (—2n,2n). That is if Z™ is the number of offspring in the
process M™, then

P(Z" =k)=p(1—p)*, k=0,1,2,....

For § > 0 define

Lemma 2.1 Assume
lim b, = b,
n—oo

and My =1 for alln > 1. Then for any 6 > 0,

lim nP(M,5 > 0) = h(b,9).

n—oo



Proof: For b = 0 the result is well-known (see e.g. [11, Theorem II.1.1]
for a more general result). While we believe that the result is also known
for b > 0, we were unable to locate a reference and thus for the sake of
completeness we provide a proof.

Let f(s) be the generating function of Z", that is

1/2-by/4n <o
T1-(1/2+by/An)sT 0=

Define fo(s) = s, fi(s) = f(fo(s)) = f(s) and in general
fu(s) = f(fi-1(s)), 0<s.

Then by the branching property,

f(s)

E[s"E|Mg = 1] = fi(s).
Therefore,

P(My =0[Mg =1) = fi(0) = f(fr-1(0))
1/2 — by /4n
1 —(1/2+bn/4n) fr.—1(0)

Fix k = [nd] and define

y=k(1 - f(0), 1=0,1,...,k.

One has
1= (1/2 % ba/4n) (L — yi1/F)
Let
z1=1/y,l=0,...,k.
Then 29 = 1/k and
) :Zl_ldn—l-l/k, l=1,...,k,
with
1/2 —b,/4n
d - 2.2
" 1/2 + b, /4n (22)
By iterating we get
1 1—dF
= —(dF+—). 2.
Now as n — oo we have
bn bn
1-4d, b —.
n(l+32) n

10



Also recall that k = |nd| and hence

_ [nd]

" 1/2 + b, /4n
Therefore s
lim z hrn R bi/n 1
oo M) T 00 né I
Since nP(M 5] > 0) ~ ng‘” =3 ZL 3 , this concludes the proof. i

Returning to the random environment case, let M™ denote the total
mass of the branching Brownian motion in random environment X" (with
geometric offspring distribution) defined in Section 1.1 (that is, n ™ !M =

(X]’;‘/n, 1)) and let M™ be as above with

b=+ [[glloo/2. (2.4)
Lemma 2.2 Let M(’} =1 foralln > 1. Then

limsupn]P’(M[;‘wJ > 0) < h(b,9).

n—oo

Proof: Fori=1,2,..., M} we denote by U 1(t),t € [k/n, (k 4+ 1)/n], the
position at time ¢ of the i-th particle that was born at time k/n. That is we
have

X == D Ot ofm) -
i=1

Moreover if Z", | is the number of offspring at time (k + 1)/n of the i-th
particle that was born at time k/n, then we also have

Xl?/n Z kéuz k—1(k/n) -

We write for simplicity &, = & (U; x—1(k/n)) and denote by f,f the sigma-
algebra generated by the environment {¢;(-),j < k}. We have, for s € R,

E(s) = E (Hﬁ—ls%>

- E (Hj”ﬁzlE (57 XZ_,]—",f))
Vil ~ Ez
N R U
2 — S i=1 1 _ 52 kS
22—s)vVn

11



Therefore,

ik

B M - 1—

n 1 k—1 n

E(SMk) - E (2_8> E H?i’“l”i;ﬁ X7 (2.5)
L= ©

Vil Mn_ &k
1 My k-1 1-— 2\’/71 .
Z ]E (2—5) exp ]E Zlog j X%_ 5

i=1 2(2—s)v/n

where the last inequality follows by Jensen inequality. Since |&; x| < /n/2
we get by trivial estimates that for n large enough

Eik
1-— NG

(1_ fi,k> (1+ i ks +< i ks >2+< §i ks >3>
e 2 )\ T 2e-sve T \ae-ava) T ee - sva
_ &ik s 1 z'2,k5 s 1
N +m<2—s_>+4(2—s)n<2—s_>
+< i ks )2 ik ( s _1>
212—s8)yn) 2¢yn\2-s
_ §ik(l—s) 51‘2,1@3(1 —5)

C_svn 2@ el =16l (26)

Again by trivial estimate on the logarithmic function we get

v

> 1

ik
1—= (1 2 5(1—s)
2/ Eix(1—5) &ps(l—s _s/2s 13
log | —=22— ] > log|1-2 b — eyl — ,
Pl ae | = °g< @—s)vn  22—spn ol
2(2—s)\/n

Ceal—s)  Es(l-s)

= Th_avhn 22—s)7n

el —s)° _
- ’2k(21——5)2n —c27(l—s)n 3/2‘§i,k|3

ikl — &,.(1—s -
_f2k—( s)\/sﬁ) B 2(75(_ 5)27)1 —ca7(1—s)n 3/2|§z‘,k;\3, (2.7)
Xg_>

for all n sufficiently large. Take an expectation to get

E (_fi,k(l —5) fik(l —5)

- —car(1 = s)n g

(2—=39)vn 2(2-3s)*n
v(l—s) (2/n+g(zix_1(k/n))(1 —s)

T Q2-sn 22— 5)2n — cog(1 — s)n3/2
(1 —s) 1910 )
= (2-s)n <V+ 2 + 12+ 2esn 1/2>
(1-s) 11l .
- (2-s)n (V Ty Teasn 1/2> : (2.8)

12



Substituting in (2.6) we get

)
E(s) > ((21 mp{4%3%§:52<y+uﬂm
=

=: f(s )

Let f(s) be the generating function of the geometric distribution with pa-

rameterp:%—i—g, then
f(s) = 1/2 — b, /4n
1 (1/24b,/4n)s

N PR
2—s (2—s)n(l— )
< 1 1 bn(1—s)
- 2-s (2= s)n
If one takes b, = v + % + 02,871*1/2 then we get that
f(s) = f(s), 0<s <1,
and hence by iterating (2.9) we get
E(SMI?) > E(SMI?), 0<s<1.

Therefore
P(M} > 0) < P(M} > 0), Vk>1,

and hence by Lemma 2.1 we get that

lim sup nlP(M, (ns) > 0) < limsupnP(M[;5, > 0) < h(b,0).

n—oo n—oo

Lemma 2.3 Let M", X™ be as above.
(a) For any 6 >0,
limsupE (Z\Z[ﬁw]) < lim sup M(?eb‘s

n—oo n—oo

and hence,

limsupE (anéj/n(l)) < limsup X3 (1)e”.

n—oo n—oo

(b) For any d,a >0,

(2.10)

(2.11)

(2.12)

lim sup,, o X (1) (¥ v 1)

n—00 k<|nd] a

limsup]P’( sup X,?/n(l) > a> <

13

+ 02.8n1/2> })



Proof: (a) The proof of goes along the similar lines as the proof of the
previous lemma. First recall that

L gl
E (fole&_l)/n) < 142 — (2.13)
for all ¢, k,n. Hence, by iteration, we get
[nd
E(Mr,) < Mr(1 [l ) 2.14
ms)) = Mo\ L+ e on ; (2.14)

and the result follows.
(b) For all k£ > 0, define

llglleo \ ™
Vi=X7 (1)1

Then using (2.13) it is easy to check that {V}"}x>0 is a nonnegative {FX" }1>0-
supermartingale. Therefore by maximal inequalities for non-negative super-
martingales we get

]P’( sup V@' > a> < E0) _ %o (1) (2.15)
k<[né] a a

To prove the result we consider the cases v + % < 0 and v + % >0

separately. First suppose that v + % < 0. Recall the definition of V;" to
get that, in this case,

P ( sup V' > a) (2.16)

k<[nd)

HgHoo) *
= P| sup X 1+ + >a
<k<L7£)6J () < no 2n

> P(sup Xpn(1 )>a>.

k<|nd]

By putting (2.15), (2.16) together we get that

X1
Pl sup Xp/,(1) =2a] < 0(), for V—I—m<0. (2.17)
k<[nd| a 2
Now let v + ﬂ > 0. Then we get
" v llgllee)
Pl sup Vi) >a(l1+—+ (2.18)
E<|nd] n 2n

= P sup X7, (1) Ay [ _k>a v el —[né]
kSLf&J k/n n . 2n = .

P ( sup Xy, (1) = a>

k<|nd)

v

14



Apply this and (2.13) with a 1+ -+ lg” ) " instead of a to get
Pl sup Xp,(1) (2.19)
k<|nd]|
[nd]
Xg(1) g
< ( ) for v + ﬂ > 0.

— ) 2
By combining (2.17), (2.19), we get

Q

_ [nd]
Xgﬂ)(@:%%+”@f) v1)

Pl sup Xp\,(1)=2a] < ,(2.20)
k<[nd] a
and by letting n — co we are done. |

The next result generalizes the previous lemma.

Lemma 2.4 Let f be a bounded non-negative measurable function on R?.
Then, for any 6 > 0,

[nd|/n 27’L 0 \Pd8J)>
where {St}>0 s the semigroup of the Brownin motion.

Proof: The proof goes along the similar lines as the proof of the previous
lemma. For any k£ > 1 we have

M’(l

E (Xin(DIXfoyyn) = Z 20 f Us e (k)| Xy

= —ZE( (it @oseah/m)| XY ) Koy

_ 1 Z E(f(ui,kfl(k/n»E(ZZ?k\ng)(X&fn/n)

i=1

14
1+ =+

IA

on | m > E (f(ui,kfl(k/n)”X(T;ﬁ*l)/")

3

~ My
||g||w> 1 &<

=1

(
_ <1+%+ e ) Zsl/nf hea (k= 1)/m))
2+ ) e,
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for all k,n and hence by iteration

N

n 2n

and the result follows. n

3 Tightness of the contour process

In this section we will prove the tightness of the sequence of the contour
processes {Y"},>1. The following proposition is the main result of this
section.

Proposition 3.1 (Tightness of {Y"},>1) For any d >0, T >0,

€l0 n—co 0<t<T 0<s<e

lim lim sup P ( sup sup |V, — Y| > 5) =0, (3.1)

that is, {Y " }n>1 is C-tight in Dg|0, c0).

The proof of the proposition will be given in this section. Recall the def-
inition of the discrete version of the local time for Y and its inverse (see
(1.10), (1.11) and (1.12) for the same definitions in the case without envi-
ronment). Fix an arbitrary ¢y > 0. We will first handle the tightness on the
time interval

t €0, Tg)’o],

and we start with the following proposition.

Proposition 3.2 (Tightness of {Y"},,>; — no jumps up) Foranyd >
0,

limlimsupP [ sup sup (Y}, —-Y"); >4 | =0. (3.2)
€l0 p—co OStSTcnO’O 0<s<e

The proof of the proposition will be given after we present several prelimi-
nary lemmas. For any a > 0 and r; < r9, recall the measure-valued process
ol oty see (1.17). Fix an arbitrary ¢ > 0. Recall that b was defined

n (2.4). We have the following lemma.

Lemma 3.3 For any 6 > 0,7 > 0, > 0,

limsup]P’<Xn’T’T+6/(1)>0> < €h(b, ). (3.3)

a,an+9
n—00

16



Proof:

Ine'|

P(Xr ) >0) < SO (xprnrr iy s o). (3.4
=0

Since, by Lemma 2.2,

lim sup nlP (Xn’T+i/n’r+(i+1)/n(1) > 0) < h(b,9),

a,an+90
n—oo
the result follows. [ ]

The following corollary is immediate.
Corollary 3.4 For any 6 > 0,7 > 0,¢ > 0,

limsupP( sup (V" —Y'ha)y >0) < €h(b,0). (3.5)
n—oo  pht<t<r™e, ’

The next corollary gives a bound on the positive increment of Y.
Corollary 3.5 For any § > 0,r > 0,

lim lim sup P( sup (Y =Yha)y >0) = 0. (3.6)

€l0 n—oo  pmecirt e

Proof: We first prove that for any ¢ > 0,

limlimsup P (7,29, < 7% 4 €) = 0. (3.7)

!
€l0 n—oco e

Suppose that there exist deterministic € > 0,6” € (0,1/2) and subsequences
ng — 00, € | 0 such that

lim P (7,7 < 7% 4 ¢,) > 6", (3.8)

ko0 r+e —

To avoid cumbersome notation, for the rest of the proof we write n and ¢,
for nj and € respectively. Note that it follows from (3.7) that

O =0 =€ (3.9)

el Tr

Then as in Lemma 3.3, we may define the sequence of measure-valued pro-
cesses X" with total mass

X ps(1) = £58T —amm™e, (3.10)

T T
r+e’ T

This process starts at the total mass

XP.o(1)=¢,

a,an

17



and, appealing to [10], as n — oo, it converges weakly in Dg[0,00) to the
continuous process s — Xg q45(1) starting at ¢’. Therefore, by the weak
convergence properties, there exists 6 > 0 such that

n—00 <6 el

lim inf P (inf_ <€";3::+5 — eﬁ;ﬁs“) > e’/2> >1-9". (3.11)
Note that on the event in (3.11), we have

/
€ N,0n+5 n,an+s —
—th,ffr —/ h,c?Jr <n ! g lyn  —a,4s-
2 7-'r‘-',-e’ Tr 1/n2 n
n,a n,a
l: 1 <l/n2§7'T+€/

Summing over s = £ < §, we get that with probability greater than 1—2§" >
n,a _n,a

i

n
0, the occupation time of Y™ on the time interval (7", 7, +6,] is bounded
from below by

1 1.
—~ > lyn >a, > 556’ > 0. (3.12)

1/n?
l: Trn’a<l/n2§7'rn+’a€,
On the other hand the total occupation time of Y™ on the interval

[T, T;Z—l’—ae’] C [ 7 + €

is bounded by €, | 0, which contradicts (3.12). Hence (3.7) follows.

Continuing with the proof of the lemma, we have from (3.7) that for
any € > 0,

lim lim sup P sup (Y"=Yha)r >0 (3.13)
€0 m—oo A\ o<t ’
< limlimsupP sup (V" —=Yna)y >4
6,1,0 n—oo T;l’agtSTnia, ™

+limlimsupP (75, < 7 + €) < €'h(b, ),

!
€l0 n—co rte

where the last inequality follows by (3.7) and Corollary 3.4. Since € was
arbitrary we are done. |

We now introduce further notation. Let

e = e (3.14)

Te, 0

We will prove the following lemma.

Lemma 3.6 For any ¢ > 0,

€l0 p—co 0<r<fma 0<s<e s T

lim lim sup P ( sup  sup (Yha, —Yha)y > 5) =0. (3.15)

18



Proof: Now we will need some further notation. Denote

N&™ = {number of excursions of Y starting at level a,,
above the level a, 4 s on the time interval [0, 72%]}
= {number of particles in the original branching particle system

at time a,n whose descendants survive till time (a, + s)n}

By Lemmas 2.2, 2.3 and the Markov property of the branching system we
immediately get

limsupE (N&™) < limsupE (X[ (1)) n]P’(]\Z&SJ > 0| MY =1)

n—~o0

< coePh(b, s). (3.16)

n—~o0

Fori=1,... Ng/’; define
of =inf{t >7",: Y >a,+6/2},

where
70 = 0,
70 = inf{t > 07 Y =ap}.

That is, o]’ are the times when successful excursions of Y™ reach the level
an + 6/2. Then we have, for any fixed integer m,

limlimsupP | sup  sup (Yo, , — Y ha)p >0 (3.17)
€l0 nooo 0<r<fna0<s<e " T
N5ja
< limlimsupE Pl sup (Y., —Y%)L > 6/2| X" >;Na’n <m
= 20 n—»oop ZZ:; <O<SI<)€( ol +s o} )+ / | an+46/2 5/2
limlim sup P (N5 > m) .
+liptimsup P (N5 > m
By an argument similar to the one in Corollary 3.5 we get that
lim lim sup P ( sup (Yyn, o — Yn)p > 6/2|X] +5/2> = 0. (3.18)
€l0 n—oo 0<s<e ° ¢ "

This implies that

limlimsup P su sup (Yha, —Yha)e >0
cl0 nﬂoop <0<r<Ié_)n,a OSSEG( T +S Tr )+ )
coe®®h (b, 5/2)

<hmmwpww>@<—————
= 0 n—>oop 5/2 > m 5

where the last inequality follows by the Markov inequality and (3.16). Since
| |

m was arbitrary we are done.

We can now complete the proof of Proposition 3.2.
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Proof of Proposition 3.2: For § > 0 let
T = {t<720: Y e [i6/2, (i + 1)8/2]}. (3.19)
Then

P sup sup (Vi —Y")y >0
OStSTglO:O OSSSG

[2K1/6]
< Y P(sup sup (0, - V), >0
i=0 teT;d 0<s<e

12K /6] +1 (

< > P
=1

However by Lemma 3.6 we get that, for every i,

sup  sup (YZ’WQJFS — Y?i(g/Q)Jr > 5/2) .(3.20)

p<fniis/2 0<s<e T T

lim limsup P ( sup  sup (Y7, .52 . YTTEL’WQ)JF > 5/2) =0,

e—0 n—oo rSEn,ié/Q OSSSG Tr +
and this finishes the proof of Proposition 3.2. | |

To handle downward jumps, we need the following proposition.

Proposition 3.7 (Tightness of {Y"},~; — no jumps down) For any
0 >0,

limlimsupP [ sup sup (Y}, —-Y)->d| =0. (3.21)
Glo n—oo OStSTgSO 0<s<e

Proof: In fact the proof is easy if one considers the process Y reversed in
time, that is the process Y;" = YTT;’O—t7 which is easily seen (see the explicit

€0
argument below) to possess the same law (with 0 < ¢ < 7/5°) as the original

process Y. Since any jump down for Y becomes a jump up for Y™, the
claim (3.21) follows from Proposition 3.2 applied to Y.
To see the reversibility claim, we introduce a sequence of path transfor-

mations {T%}.—o1/n,..ki—1/n 00 {(WE,Y") ), 1jn2,.. 7705 each of which is
—Y seeleq

. n,0
measure preserving and preserves T, , such that

{(W?, ﬁn)}t:O,l/nQ,...,TH’O = TKlfl/nOTK172/no' . .OT(]{(W?, }/tn)}t:O,l/nQ,...,Tglo’O ;

0

where (W™, Y™) denotes the image of (W”,Y™) under the transformations.
This will prove the claim.

To avoid cumbersome notation, we consider the case of n = 1 only, and
we omit the index n. The general n can be treated the same way with proper
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scaling. For z = 0, the transformation Ty is obtained as follows. If ¢t = TJO

for some integer j € {0,1,...,¢co}, that is ¢ is a return time of Y. to 0, then
define #'(t) = 79 — TJQ. Ift e (T](-)il,T]Q) for some j € {1,...,co}, that is ¢
belongs to the jth excursion of Y. from 0, then define ¢/(t) = /(1)) +t —7)_,.
Then,

To(W.,Y)(t) = Wy, Yew)-

(In words, Tp reverses the order of the excursions from 0 but keeps the time
orientation of each excursion intact; Thus, the total length of the excursions
is preserved.) It is straightforward to check that the law of To)(W.,Y) is the
same as that of (W.,Y)).

For z =1, let
t,(1) =min{k > 0: Y = 2},5.(1) =min{k > t,(1) : Yy = 2, Y11 = 2 — 1},
and for j > 1,

t(+1) = minfk > s.(j) : Vi = 2},
s:(G+1) = min{k>(+1): V=2 Y =2 - 11

T7 is then defined as Ty applied to the excursions of the path from level z.
Explicitly, let j, = max{j : t.(j) < 70} For t € (ugﬁgl[tz(j),sz(j)])c, set
t'(t) = t. For each j, let t,(j,0) = t.(j), t2(4,¢) = min{t > t,(j,¢) : Y =z},
and £,(j) = max{l : ,(j,f) = s.(j)}. Let ¢’ be defined on the interval
[t2(7),s2(7)) in the same way as the case of z = 0 with T](-), j=0,1,---,¢o
replaced by ¢,(4,¢), £=0,1,--- ,£,(j). Then,

T.(W.,Y)(t) = Wy, Ye)-

Again, in words, T, reverses the order of the excursions from z but keeps
the time orientation of each excursion intact; Thus, the total length of the
excursions is preserved.) It is straightforward to check that the law of
T.(W.,Y.) is the same as that of (W.,Y). We can continue this proce-

dure for z = 2,3, -+ , K; — 1. As explained above, this completes the proof.
[ |

To finish the proof of the Proposition 3.1 we need the folowing lemmas
that describe the limiting behavior of {£™},>; and {7™°},>1 (recall that
o = Ez;;o was introduced in (3.14)).

€0
Lemma 3.8 For any co > 0, the sequence of processes {Z”"}nzl is C'-tight
m Dg.

Proof: First recall from (3.14) and (1.18), that Xj77°(1) = ™% is the
total mass at time a of the measure-valued process X& 0 defined in the
introduction. Since the sequence of measure-valued processes {X"“ },>1 is
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C-tight in Dy, (see [10] and the comments leading to (1.15)), we get the
desired result. [ |

The next lemma studies the limiting behavior of {7™%},>;. Toward
this end, recall that according to our conventions introduced after (1.11),
we use the same notation for an increasing function and the corresponding
measure.

Lemma 3.9 (a) Foranyr > 0, the sequence of random variables {77"°}p>1
is tight and any limit point 70 satisfies

(b) For any e >0, A >0, there exists R > 0, such that

lim inf [P ((Tg’o > A) >1—e

n—oo

(c) The sequence {7™°},>1 is tight in M(R,).

(d) Let 7° € M(Ry) be an arbitrary limit point of {7 },>1. Then for
any fized r € Ry, 70 is continuous at t = r with probability 1.

Proof: (a) Define

Yy
) = [ 6= <
=0

Note that
70 =T" o (K1) (3.22)

T

On the other hand

Ky
T, 2 7,8
T".0(K1) = 07 dz < Ky sup £,
Tr 0 Tr SSKI Tr

and since by Lemma 3.8, {E:‘;{’O tn>1 is tight, by (3.22) we get the tightness

of {7_;1,0}”21‘

Similarly, since {€}, }n>1 is C-tight for any € > 0 we can fix d such that
. n,s .
]P’(;I%EET:L’O >cyf2) >1—¢€
for all n sufficiently large. Using this, (3.22) and definition of T™ we get

6
r
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with probability at least 1—e¢ for all n sufficiently large. Since € was arbitrary
we get that any limit point of 7, 0 is greater than 0 with probability 1.
(b) For any K > 0 we can represent

TKT }: zr’

where, for each i, T"’O is distributed as 7. Fix arbitrary e, A > 0. Since,
by part (a) of the lemma any limit point of 7" is strictly greater than
0 with probablhty one, we can easily choose K sufﬁmently large such that
T}é? = ZzKr Tir O > A with probability at least 1 — ¢, for all n sufficiently
large.

(c) Immediate from (a).

(d) Let 7% € M(R,) be a limiting point {7"°},>1. To prove this part of
the lemma we have to show that, for any € > 0, there exists § > 0, such that

P(rs —7)5>¢€) <e (3.23)

Similarly to what we have done in (a) define,

Y
T () = / (% — mYdz, 0< s <t (3.24)
0
Then we have
,0 0 K
- n, _ n,r n,z n,z
T =T = T o (K1) = / (O = 050 )z (3.25)

= / XnrO0mH9(1)ds < K sup Xou ™ oro (),
s<Ki

where recall that X7~ 07+ is the measure-valued process corresponding

to the branching partlcle system in random environment, constructed in
Section 1 (see (1.17)), that starts at time s = 0 with initial mass 25. By
Lemma 2.3(b)

P (sup Xnr—orto(q) > 6)

s<Ki

2X OO (1) (ebK1 v 1)

€

46(ebK1 v 1)

)

IN

(3.26)

€

for all n sufficiently large. We can take d sufficiently small such that the right
hand side of (3.26) is less than €/2, and this together with (3.25) implies
that

IP( 7l G s e) < e/2. (3.27)
for all n sufficiently large. Therefore (3.23) follows for any limit point of
{Tnﬂ}nzl. l

Now we are ready to complete the proof of Proposition 3.1.
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Proof of Proposition 3.1: Proposition 3.1 follows immediately from

Propositions 3.2, 3.7, Lemma 3.9(b), and the fact that ¢y was arbitrary.
[ |

4 Tightness of {(W" (")},>; and proof of Theorem 1.2

The bulk of this section is devoted to the proof of the following proposition.

Proposition 4.1 The sequence {(W™, (" 70)},>1 is tight in Dyysx mr.)
x M(Ry). Let (W, 0,79 be its arbitrary limiting point. Then (W,£,7°)
belongs to Cyyu pm(r,) X M(Ry). Moreover, £ is the local time of Y (Y is
the lifetime of W), that is,

t a
/ ly,<qds = / i dr, Ya >0, t>0. (4.1)
0 0

Note that following our conventions, we denote by ¢"(dt) the measure and
by ¢; = 1"([0,t]) the corresponding increasing distribution function corre-
sponding to £.

The proof of Proposition 4.1 is long and we indicate the main steps. We
will first prove the tightness of the sequence of processes {W"}, >, based
on the tightness of the contour process established in Section 3. This will
be obtained in Lemma 4.6, after going through a fair amount of preliminary
material. The tightness of the sequence of the local time process {¢"},>1 is
then obtained in Lemma 4.7, thus completing the proof of Proposition 4.1.
The rest of the section is devoted to the identification of the limiting snake
representation. Here we have to identify a limit point of the sequence of the
local times {¢"},>1 as the local time of the limiting contour process, and
this is done in Lemma 4.11. Additionally, in Lemma 4.14 we verify that a
limiting point of {744%},>1 is indeed the value at ¢y of the inverse function of
the limiting local time. The proof of Theorem 1.2 is an immediate corollary
of these facts, and is presented at the end of the section.

As in the previous section, where the tightness of the contour processes
{Y"},>1 was obtained, we first handle tightness on the time interval [0, 745"].
Fix an arbitrary a € [0, K1) and recall that {X§7"}i>o (see (1.18)) is the
measure-valued process characterising the branching particle picture, and in
particular, nX& 52(1) is the number of particles alive at time a,, = |an]/n.
First we derive a bound on the maximal displacement of the offsprings from
the ancestors during the time interval [ay, ,a, + 0]. This estimate will be
crucial for proving tightness of paths of the Brownian snake in random
environment.
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Fix n € (0,1/4) arbitrary small. Define

n,0
e
Z::],é = n/O (|W§l,W?(an)|>51/27n)£an+6(d8) (4.2)

= #{particles alive at time a,, + ¢ that are displaced by more than

61277 from the ancestor at time ay, }.

Lemma 4.2 There exists 049 > 0, such that

P(Z)%1% > 0) < e, V6 < 84,0, (4.3)

Qan

We postpone the proof of Lemma 4.2, and prepare some preliminary
estimates. Introduce the event

Whaskns = LW an+6—0627F) =W (a, + — 52~ D) > §1/2-mo=k/4)
and define

n,0

Tc,
7k _ 0 n,an+6—627F1
Zan ,6 - / 1Wn,a,(5,k,n,5£ (dS) ’
0

which gives the number of particles alive at time a, + 6 — 62751 whose
historical paths were displaced by distance more than §/2-727%/4 on the
time interval [a, + 0 — 02~ q, +§ — §27¥].

Lemma 4.3 There exist C = C(K1) and d4.3 such that, for all n sufficiently
large,

P (Z’;n 5> o) < Cepe® " W5 < 645 (4.4)

Proof: Let

that is, Z Lo 18 the total number of particles that are alive at time a,, +

§— 627k and whose historical paths were displaced by distance more than
61/2=12=k/4 on the time interval [an +6— 027 k=1 g, 4+ 6 — 6275, We

enumerate these particles by i = 1,. Z a, o and let Z; Zbk e be the number of

living descendents of the particle (z =1,...,Z C’f ) at tlme an+8—827F1
Then clearly

7k
Zan ,0

- Sik
ZE s=> 70, (4.5)
i=1
Lemma 2.2 and (4.5) imply that for all n sufficiently large

2
~k n,c i,k n,c
P(Zh, 5> 0| X0 sasy) < D0 B(Zi 5> 0] X0 o)
=1
aZk
~k —k—1 an75
S Zan ,52h‘(b7 52 )/n S m,
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where the last inequality follows, for all § sufficiently small, from the defini-
tion of h. Therefore,

_ _ 4 .
k _ k 7,C k
P(Zk ;>0) =E(P(Z ;> 0‘ Xp saiasy)) < = E (Zt.5)

n,co
We next represent the measure XO,anJr(S(le*(k*l)) as
n,cq
1 nX0,an+6(1—2—(k—1>)(1)
n,co J——
X0 ants1—a-t-1) = n Z Ou (4.6)

=1

where U; are the positions of the particles alive at time a,, + 0(1 — 2*(’“*1)).
For the rest of the proof of the lemma we call the particle that is located at
U; at time a,, 4+ 0(1 — 2~ * 1) — the i-th particle. Let X™ be the measure
describing the positions of the living descendents of the i-th particle at time
an + 0(1 — 27%) and similarly to (4.6) we can write

- 1
XM == O, 4.
- Z U (4.7)

where U; i, is the position of the k-th descendent of the i-th particle at time
an + 6(1 —27%). Then we get that

n,cq
nxo,an+6(1—2—(’“—1))(1)
n,Co _ 1,0
Xo,an+5(1_2fk) = Z X
i=1
Define
d
fz(x) = 1‘x72|>51/2—n2—k/4, T,z S ]R .
Then,
n,cq
nXo,an+5(1—2—(k—1))(1)
ok _ i
Zan 8 Z Xan+5(1—2*(’v71),an+5(1—2f’v)(fui)'
i=1

Hence, using Lemma 2.4 in the first inequality, there exists d4 3 sufficiently
small such that

. <2§" 0 X&ﬁwufzf(kﬂ)))
et gy -
: zz; (1 - n * 2n > ;PUMB&Q% —U;| > 674712 )
g ng2 k41
= X(;f:+5(1—27(k71))(1) (1 + % + %) 676*"2’6/2’ V6 < 6us
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where P, is the law of the standard Brownian motion starting at z. By
taking the expectation we conclude that for all n sufficiently large,

E (ZIL ,6> < 0006_67772]6/27 Va < K1,0 <043,

where C' = C(K1), and we are done. ]

Proof of Lemma 4.2: Fix §y sufficiently small such that 103(56]/2 <1
Let 6 < ég. If an s = 0 for each k£ > 1 then the maximal displacement of
the path of any particle on the time interval [a,, a, + J] is bounded by

251/2717271@/4 oL s
k=1 - 2t -1"

Hence by Lemma 4.3 we get that for § < (dg A d4.3),

o o

~ _s—mok/2

P(Z0"% > 0) < S R(ZE 5> 0)< Oy e
k=1 k=1

Now take d49 < (dp A d4.3) sufficiently small so that for any § < d4.9
s k/2
Ceg Ze*‘sin2 / < e*‘sin,
k=1

and we are done. |
Lemma 4.4 For any € > 0, there exists 61 > 0 such that

limsup P <sup sup ZZ?” > O) <e. (4.8)

n—o0 a<Kj 6<d1

Proof: For any my > 0 we have by Lemma 4.2 that

Ap, == P (Zn,Bn/Z > 0, for some 1 < K12™, m > mo)

i2—m g-m
o0 K12m

< > 3 (ZZ.’;’?%;,M > 0) < i Fy2me "

m=mg =0 m=mg

_9mgn/2
2mo < e, and

Choose mg large enough so that 270 < 49, Ay, < e
10 - (2-27m0)1/2780/2 < (g=mo) /220, (4.9)
Define

C(Ky1,mo) = {w: 22 =0, ¥m > mo,i < K;2™}.

i2—m 2—m
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Then ,
P(C(Ky,mo)) >1—e 2™ >1 e

Fix w € C(K1,mp). Fix arbitrary a < Kj and 6 < 27™0. Then there exists
m > myg such that

27ml <5 <o, (4.10)

For j > my let a; denote the smallest integer multiple of 277 that is larger
than a and, with b = a + 4, let b; denote the largest integer multiple of 277
that is smaller than b. Let s be any time such that Y]* = a + J. Then since
§ <270 < gy9 and w € C(Kq,mgp), we have by (4.10) and the continuity
of W?(-) that
W= W2a)| < W) = WEan)| + > [WE@) - W)
l=m+1
Y0 W) - W)
l=m+1

< 10-271/2=30/2)m < 1. (25)1/2*377/2 < §l/2=2

where the last inequality holds by (4.9). By setting §; = 27" we are done.
]

The following corollary is immediate.

Corollary 4.5 For any € > 0 there exists 41 > 0 such that,

P| sup sup sup [Wi(a+6)—Wi(a)|l > 5%/2—277 <e.
s<rae0 0<61 a< (VP —0) 4
— CO

We have made all the preparation for the proof of the following lemma,
concerning the tightness of the sequence {W"},,>1.

Lemma 4.6 The sequence of processes {W"},>1 is C-tight in Dyy.

Proof: Recall that the C-tightness of the sequence of the contour processes
{Y"},,>1 was proved in Section 3 (see Proposition 3.1). Fix arbitrary 8 > 0
and o = Y/2721 Then for any 6, > 0, we have the following inclusion

{ sup sup sup |Wi,;(u) - Wi(u)| > a} C
s <70 6<61 u>0

{ sup sup [Y; - Y[ > 6}
SST?O’O 0<61
U{ sup sup sup |[W™(a+4) — W2(a)| > gY/>21}.
<0 0SB a<(Ya—0)+

The C-tightness of the sequence {W"},~; now follows from this inclusion
together with Proposition 3.1, Corollary 4.5, and Lemma 3.9(b). [

We next turn to the local time processes ", n > 1.
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Lemma 4.7 The sequence of processes {£™ },>1 is C-tight in Dy, -

Proof: Fix an arbitrary ¢y > 0, and define

6 = E?/’\i—?o’o’ s,t >0,
with Z”’S(dt) being as usual the corresponding measure. Note that since ¢ is
arbitrary, it is enough to show the C-tightness of {¢™ },>1 in Dy, [0, c0) and
then the result follows immediately from Lemma 3.9(b) (recall the properties
. . . m,t
of convergence in vague topology). Since for each ¢,n, the function s — £
is non-decreasing, to show the C-tightness of {¢"},>1 in D, [0,00), it is
sufficient to prove the tightness of {£;"'},>1 for each fixed t. That is, in view
of Lemma 3.9, we need to prove that for any constant C,
limsup limsup P( sup | — 77| > ¢) = 0. (4.11)
h—0 n—0o0 o<r<C
The proof requires some care since introducing the time ¢ prevents one from
directly exploiting martingale properties and the tightness results in [10].
We use the inverse local times 7%, @ > 0,7 > 0 to define the collection
of processes
X0 = gridks _grid g >,

n7,6

T(+1)8 7js
Note that X2/ 0 represents the total mass of the branching process in random
environment Xg:ggﬁgﬂ)é, defined by (1.17), which starts at “time” 4, such
that N
X7 = Xt ) = 6

We also denote by F, 139 the filtration generated by the process X, 5’Z§ f +1)é
and its environment by time [ /n.

On the event t < Tg)’o we have, for any T > 0,
= B

sup

0<r<T

< sup sup \Ei‘s:;?h E“sn 5|+ sup sup X;’j"s
i0<T,j0<co ve[0,8] 748 Tis i6<T,j6<co s<§

= sup A;;+ sup B;;. (4.12)
i6<T,j6<co i6<T,j6<co

10+s

n7,6

By the C-tightness of the sequence {s — °°*5},51, see e.g. [10], Theorem

4.2 (proved there for the binary branching but valid, with similar proof, for
the geometric case under consideration here), we have that for each fixed §
and each fixed i <T/6,5 < ¢o/9,

lim limsupP(A; ; >¢€) =0.

h—0 n—oo

In particular, for any § > 0 fixed,

lim limsupP( sup A;; >¢€)=0. (4.13)
h=0 n—oo  is<T jé<co

To control B; j, we use the following lemma.
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Lemma 4.8 For some universal constant ¢ and all n large,

E sup ((Xé’j’6)4) <edt, foralld<1
0<5<6

Indeed, Lemma 4.8 and Chebychev’s inequality imply that

P( sup B;;>e¢) < Tepd 26t
i6<T,j6<co

Together with (4.13), this yields the proof of Lemma 4.7, once we complete
the proof of Lemma 4.8. [ |

In the proof of Lemma 4.8 we will frequently use the following lemma,
whose immediate proof (using iterations) is omitted.

Lemma 4.9 Let ¢1,co > 0 and suppose z; ,i = 1,2,... satisfies the follow-
ing inequalities

2z < C—1+(1+C—2)2i,1, 1=1,2,....
n n
Then there exists ¢ > 0 such that for any ¢ € [0, 1]

z; < 5(0—1(5 + 29), Vi < |nd].
Cco

Proof of Lemma 4.8: The argument uses computations similar to those
in Section 2. Throughout the proof, ¢ denotes a constant whose value may
change from line to line, but is independent of n or §. Note that the estimates
on Xg’ % that we get, throughout the proof below are uniform in 4, j and thus
we may and will just consider i = j = 1 and write X, = _§’1’6 and F; =
.7-'11’1’5 ,1=0,1,2,.... Note that X, is the local time at level s accumulated
by the random walk during its first |nd| excursions from 0. We have the
representation
nXpm/n

Xonrvym=n"" Y Zkms1,
k=1

where the Zj ,,41 is the number of offspring of the k-th particle at time
(m +1)/n. Recall that Zj,, ,k = 1,2,..., are conditionally indpendent
given F,,, and for each k, Zj, ,, is geometrically distributed with parameter
1/2 — &k m/4\/n. Here with some abuse of notation,

gk,m = fm/n (xk:,m)a

§ is as in Section 1.1, and xy ,, is the position of k-th particle at time m.
Note that by (1.5) and our moment assumptions on £ we have that

Oék7m+1 = E(Zk’m+1|./fm) S 1 =+ E/n
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Because the mean of Zj, ,, is close to 1, the sequence X(i—l—l) /n 18 almost a
martingale. To make it into a martingale, introduce the variables, My = 9,

My 17 g,
M= == % 2>
X(i—l)/n nooa— Gk
Note that
Xin/M; < (1+¢/n)', i > 1. (4.14)

On the other hand, i — M, is a discrete martingale, and hence by the
Doob-Burkholder-Gundy inequality, we have that

nod
E( sup M) < eB(MD3, = B3 (AM),)2, (4.15)
0<i<én |

where

(AM); = E((M; — M; 1)*|Fi1).

We prepare next some estimates. First recall (1.5), our moment as-
sumptions on £ and its covariance structure to get the following bound on
the correlation between the {Z ;41}:

\E[(Zyi1/ i1 — D(Zi i1/ ip1 — DIF)| < &/n, Vh# K.

Then we easily get,

S 2
(AM)i = M?E _ <—’“+1 - 1> | Fi
nXi/n 1 \ kit
B 1
< eMP——+ M} max _ E[(Zyiy1/oniv1 — D) (Zrr i1 /o ivn — 1)|Fi
nXi/n k#k! kK <nX; ),
M;  M?
< o— e, (4.16)
n n

Note that EM; = EMy = J, and hence to control the right hand side
of (4.16) we need to bound E(M?). M; is a martingale and hence with
Bi; = E(M?) we use (4.16) to get

M;_ M? ¢ )
Bi1; < Bi_1 + cE(— Ly 4 R (—=) <1+ —-)Byi-1+—.
n n n n

By Lemma 4.9 we get
E(M}) = Bij < &8 + Mg) < e, i < |nd].

Now recall again that EM; = EM, = ¢ and use the above and (4.16) to
obtain that
E(M); <&, i< |né].

31



A similar computation, using Remark 1.1, gives
E((M;11 — M;)3|F;) < en2M; + en 32 M2 + en~ M.

With By j = EM ]3 one then obtains the recursions

Baji1 < E(M}) +E((Mit1 — M;)°) + CE(E(Mit1 — M;)*|Fi) M;)
< 1+ %)Bg,j +E(M?)(en2 + én~") + E(M;)n 2
4
<

(1+ —)Bz,j + é6’n 1 ,

n
for n sufficiently large (n > 6~!), and therefore by Lemma 4.9 we have
Bayj < e(6° + Mj) < e’ i < [nd]. (4.17)

Repeating this computation for the fourth moment, one obtains that with
Bsj = EM},

B3 ; <edt, i < |nd), (4.18)
for all n sufficiently large. Substituting (4.16) into (4.15) and using the last

estimates, one gets

E( sup M) <eot, (4.19)
0<i<én

for all n suffciently large. Since, by (4.14),

) ¢ omn 1
sup X, < (1 + —) sup M, ,
0<s<8 n 0<i<dn

this completes the proof of Lemma 4.8. [ |

Corollary 4.10 {(W", ") },>1 is C-tight in Dyyy pmr,)-

Proof: Immediately from Lemma 4.7 and Lemma 4.6. | |

In what follows let (W, Y, £,7%) be a limiting point of {(W", Y™ £, 77%0)},~;.
To simplify the notation we omit subsequences and simply assume that
{(Wn, Yy ¢ 70}, 51 converges to (W, Y, £,7%). We also switch (by Sko-
rohod’s theorem) to some probability space where the convergence holds a.s..
Recall again that we write ¢} and ¢, for £"([0,¢]) and £([0, t]) respectively.

Lemma 4.11 /¢ is the local time of Y.
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Proof: First note that by properties of weak convergence of measures, for
any a > 0
0ot — 1 (4.20)

for any point of continuity of function ¢ — ¢¢. However by a limiting ar-
gument and the convergence of Y to Y, it is easy to derive that if Ys # a
then s is a point of continuity of ¢t — ¢¢. Therefore, for all a,t such that
Y; # a, (4.20) follows. Note that

1 \_thJ \_n2tJ/n2
Tie) =z Z:; yr g a :/0 lyp<ads, t>0.
Also for any a > 0 and § > 0 we have

t a+d
/ 1y s<yr<atsds = / 0% ds < 26 sup 4%
0 a—o8 s<K;

Since {¢;"*},>1 is tight and § was arbitrary we can make the left side arbi-
trarily small by taking § > 0 sufficiently small with probability as close to
1 as we wish uniformly in n. This, by a standard argument, that also uses
the convergence of {Y"},,>, implies that

|n2t]/n? t
/ lyncqds — / ly,<qds (4.21)
0 0

for any @ > 0,¢ > 0. On the other hand

a a
Tt”(a):/o E?’Tdrﬁ/o 0 dr,t >0,

where the last convergence follows by convergence of £;"" at all the points r, ¢
such that Y; # r (there is just one level r such that Y; = ). This and (4.21)
yield

t a
/ ly,<,ds = / i dr, t>0, (4.22)
0 0

for all a,r, and hence ¢} is indeed the local time of Y, for any ¢ > 0. [ |
Remark 4.12 The above lemma and Corollary 4.10 finish the proof of
Proposition 4.1.

The next two lemmas are essential for the proof of the “charaterization

of the limit points” part of Theorem 1.2. First we prove the continuity of
the local time at the level zero.

Lemma 4.13 ¢ — ¢9 is continuous.
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Proof: It is enough to show that for arbitrary ¢y > 0, {f?’omo} is
>1

Te, 0

C-tight in D0, 00), that is, for any € > 0

léiigl limsupP | sup " — 6?;% >e| =0. (4.23)

n—eo |\ g

Suppose (4.23) does not hold, that is, there exist €,¢e; > 0, such that for all
0>0

P sup f?’o — E?;Oé >e| > €. (4.24)

tSTgLO’O

Fix such €, ¢; > 0; we have the inclusion

0 0 . 2¢o 0 0
supOE? — 0 > € C{EIZzl,...,{TJ: TZ_H)(—T% <5}.
n, 2

t<7c;

. n,0 n,0 .
Since T\ ) — Tie 0= 1,.
T2 2

2

. 2c0 | . _npo n,0 2co n,0
]P’(Elz—l,..., {7J PTG T T <5) < ({TJ —|—1)]P’(7’€/2 <(5).

2

. LQ%J are identically distributed we get

By Lemma 3.9(a), we can choose ¢ sufficiently small such that

€1

P <) < qpmyay

for all n sufficiently large, and hence

€
P | sup f?’o - f?;% >e| <2
tSTCnO’O 2
and we get a contradiction with (4.24). |

Lemma 4.14 For any fived r > 0, 70 equals, with probability one, to the
value of the inverse function of ¢° at r, that is,

0 =inf{s>0: & >r}, as.

Proof: Recall that we assume that we are considering the probability space
where ™9, 70 — (£9,79) in D, [0, 0c0) x M(R.), P-a.s.. Moreover we know
that for any fixed r, 7°(-) is continuous at the point 7. This, by properties
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. . . 0 .
of convergence in M, implies that for any fixed r, 7" — 70, P-a.s.. Fix

arbitrary cg,d > 0. Then, by definition of the local time, we get,

0 > o+ 0. (4.25)

TCOJr5

Since ™" converges to the continous limit, the convergence is uniform
on the compacts. This and the convergence TZ)’E)F s TCOO 45 imply, that by
passing to the limit in (4.25) we get

0 >eco+4, (4.26)
co+9
and hence
inf{s >0: € > co} <79 45 (4.27)

Similarly we can show that
inf{s >0: 2 >co} > 7'000_5. (4.28)

Since § was arbitrary, and by the continuity of 70 at ¢g (see Lemma 3.9(d))
we get

inf{s >0: €] > co} =70,. (4.29)

and we are done.

Lemma 4.15 For any ¢ € Cy(RY) and fized cy > 0,
n,0

Te, R ’TCO R

/ " (W) (ds) — / " (W) (ds), V>0, P—as,  (4.30)
0 0

as n — oo, where

70 =inf{r >0: £ > ¢l (4.31)

co

Proof: ng’o — TCOO, where by Lemma 4.14 TCOO is defined by (4.31). More-
over, by Lemma 4.13, /Y is continuous at T(?O, therefore by elementary prop-
erties of weak convergence, for any continnuous function f(s)

n,0

/TCO f(s)0™(ds) — /TCO f(s)°(ds), P —a.s., asn — oo.
0 0

Now the result for ¢ = 0, follows by uniform on the compacts convergence
of W” to W. The convergence of the integral for ¢t > 0 follows immediately
since, by the continuity of Y, the ¢!(ds) does not charge the point s = T}}O

for every ¢ > 0. | |
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Proof of Theorem 1.2: The tightness statement was proved in Propo-
sition 4.1. To finish the proof we need to derive the characterization of
the limit points. Fix arbitrary ¢ > 0 and let Xy} be the measure-valued
process defined as in (1.18), that is,

n,0

X20(9) / Y sWmyet(ds), te [0, K], (4.32)

for all ¢ € B(RY). Let (W,Y,¢,70 ) be an arbirary limit point of { (W™, Y™, (", TZ;O)}HZL
Fix arbitrary ¢ € Cp(R%). As we have mentioned already, due to results
in [10], the sequence of process { X" },>1 converges weakly in Dy, [0, K]
to the process X € Cyy,.[0, K] satisfying the martingale problem (1.7-1.8)
on [0, K1], with X§° = ¢pd,, and hence the left hand side of (4.32) converges
to X;[°(¢) for any ¢t € [0, K;]. As for the right hand side of (4.32), due to
Proposition 4.1 and Lemma 4.15 it converges, along an appropriate subse-

0 ~
quence, to fOTCO d(W)t(ds) for t € [0, K1), where £ is the local time Y. This
gives us (1.19) for any ¢ € Cy(R?). The extension of the equality to any
# € B(R?) is trivial. |

5 Proof of Theorem 1.3

The proof of the result is based on convergence of approximations. For
simplicity, as before, we assume that (W" B™ (") = (W™ Y" B" (") —
(W)Y, B, ¢) = (W)Y, B,{) a.s. (based on Proposition 4.1 we can always get
it by Skorohod’s theorem via an appropriate subsequence) and

) By ) - B o)

On the level of nth approximation we will be dealing with the following
approximating functional:

1 TLY):L/WQil _ 1 Zl, gl/(Wn 2(l+_1))
n — n =1 n n
Fn( n*2k) = E E € Vi k/ .
=1
Note that
nym -2 1 l n I+1
L2 S S e (W L)
15~ mt ™ =g X (wy, ), Y 1 pne < Ve
Fn Wn,Q = nY" 5—1 7Lzl ¢ (Wn (Hﬁl))
n (k+1) l Zl f/n e n =181 k/n2 o
n =
ny "™
1 k/n? Wn yn 1
+ %e \/ﬁzl’:l EV( (lc+1)/n2( k/n2+ /"))7 if }/(Z+1)/n2 > ykr;n%

Further, if l/'(7€+1)/n2 > Yk"/n2, then

Wity m2 Yigme +1/1) = Wik 1) 2 = W2 +im,
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where 7 is a Brownian path independent of W;! n2: Let
Fe = a{wg}nz, lgk}w{&, [=0,1,2,...}.
Define
Vi=F (W) = F (Wipyme) s k=120
Then by the standard decomposition of F' (WZ /ng) we get that

F (W p2) =My + A7, m=1,2,...,

where M), ,m =1,2,...,is the {F, };n>1-martingale given by
m—1
(Vir1r = E (V1| Fr)) =12,...
k=0
and
m—1

E (Vis1|Fr), m=1,2,....
k=0

We first study the limiting behavior of A™.

Lemma 5.1

. 1 1 0 -\
ATn%J — /Oe BYS(WS){_§ABYS(WS)+§Z<a$iBYS(WS)) }ds

t .
—l—f? — / e~ Br1(Ws) EKl(ds)7 as n — 00. (5.1)
0

Proof: Using E, to denote expectation with respect to the Brownian path
7., we have

E (Vis1|F%)
= P <Y(7Iz+1)/n2 < Yk%ﬂfk)

x E <_le \/_Zl’ k/n fl’( n=2i)

n Yier1y/m2 < Vi fk)

+P (}/(TI;Jrl)/nQ > Ykn/n2|fk>

yn
" k/n2

1 -1y / v® 41
- (ﬁe T (Tt /n))‘y&l)m > Vi Fk) .
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Therefore,

E (Vig1|Fx)
11 s L L B m, )
“‘<§‘aﬁ&mﬂ@w20);€ﬁ A

1 1 5 1 2,’“/" € (W g, 41 /)
# (3 aymm (iea) B (o FeEes e

R nY"n
_ 1 (En (e fz,, ’3/" flmwg?km/n)) _e—ﬁzl,zﬁ/ LW 2,))

£Y ( ) e \/lﬁ Z;iﬁ/#il &u( ] n*2k)
2 = n
4 3/2 ke/n2 n=2k

+E, (e \/_Zl’ kl/n Sl’(wz—%"'m/n)))

]' Zn - 15 ( — )
14 2
-0 — E Ijkn/ ,= Ffle \/— =1 k

+
1 (E (e Byp,. 2(Wn_2k+m/n>> B 1/n<W:_2k>>
= 5 (B

1 o Byn 71/71.( n—2 ) Byn (WZ—Q +nl/n)
+ —4n3/25YI:1/n2 (Wn*%) <e k/n2 k +E, <€ Vi/n2 k

1 1

— - 1lyn — — - 1yn e
+n Yime=0 T T Yy e EmLY] o =K

= Il,n,k + I2,'n,,k: + I3,n,k I4,k,n )

1
—-1
n

Yk/n

—Br,1/n(W'_y))

where we also used the definition of B. We begin with an estimate of

Byn (Wr' s, +m1/n)
E, (e Vi =2k Y > By 1t6’s formula we get
E, (e BYkn/ 2(W22k+”71/n>> _ e_BYl:L/n (Wr_5,)
1/71 7Byn (Wn_ +775) 1 A
+E, (/0 e kmz nT2k <_§A$Bykn/n2 (WD sy + @) |g=n,
1</ 0 . 2
+ 2 Z <8—%By,j/n2 (WD o) + x)\$ns> > ds> .

The first term at the right side above can be further decomposed as

- T () g ()

-0 (1f 2. (o))
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where ©(x) is some point in [—z,z]. We get

L =By (W) 1 . 1 . 2
Lnk = 57 ( " <‘ 267 (Womee) + 35670 (Wase)
3
-3 2
+O(n / <‘§ k/2< n— Qk)‘ >>

Un _Byn _(Wn_, +ns) 1 .
+ En </ e Yk/ 2 n—2k <—§A$Bykn/ 5 (W272k + x)‘x:ng
0 n

%z:: <8i Yiin 2(Wn o + T)|z= n9>2> ds)).

To handle Iy ,, j,, denote

~Byn (Wr_y +ns) (1 -
Roi(s) = e W N <_§A‘BBYkn/nz (Wh—2p + @)|a=n,
d 2
1 0 -
+ 2 Z <8$ By Yi/n2 2 (Wisy +x)|x=ns> ) .

Then,
1 . ~Byn _1/n(Wr_y)) 1 <
fom = W%a (ea) (5 2= e (en)

+0(n <(§ v (W %)‘2)) +E, < 01/n Ru(s) ds)) .

All together we get

Lk +Ione = %En </01/n Ry, k(s) ds) +O(n*5/2 (‘f v ( _2k>‘3>
090 (o () )2 ([ mestore).

From this it follows that for any ¢ > 0

[n2t] |n?t) 1/n
Z Ik + long) = W Z nlk, (/ Ry, k(s) d3>

k=1 =
Ln?t]

ONEDIE (Jevz.. ()

Ln°t]

(n=5/2) Z ) (‘f A ( n- 21@)‘) nk, (/Ol/n Ry k(s) dS)
e g

=1
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where the second and third terms on the right side of the first equality
converge to 0 and the first term converges to the first term on the right side
of (5.1).

Now we will treat I3, ; and Iy, ;. By definition of the approximate
local time £™" '™ we get

LthJ ¢ .-
Z g + Lanp) = 6° —/0 E, <€BK1_711(WS+1/”2)> oK (ds).

k=0

Then pass to the limit, use the uniform on compacts convergence of " and
W™ to £ and W, and the continuity of B to get that

Ln?t]

t N
Z (-[3,71,]6 + I4,n,k) — g? — / e_BKl (WS)EKI (dS),
k=0 0

as n — oo. Thus, we obtain the second and the third terms in (5.1). ||

Define the bracket process for the martingale M":

m—1
(MM, = E ((M,g+1 — Mp)? \]-'k)  m=1,2,.... (5.2)
k=0

Then we have

Lemma 5.2

t )
(M) |24 —>/ e 2BvsWsl g asn — oo.

Proof: It is easy to check that for any m > 1,

m—1 m—1
E(VZalFe) = > (B (Vigr| Fi))?
k=0 k=0

By Lemma 5.1 we know that as n — oo

[n?t]

‘ ; 1 N . -\
Z E (Vk-f—l‘fk) — / G*BYS (WS) {—gABYS (Ws) + 5 Z (8{1}BY5(WS)> dS
0 . 7

k=0

t .
+€‘2—/ eiBKl(WS)KKl(ds)
0

which is a process of bounded variation. From this it is easy to deduce that

Ln?t]

> (E Vil F)® — 0,

k=0
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as n — oo. Hence it is enough to consider the limiting behavior of
[n%t]

k=0

By repeating the argument in the proof of Lemma 5.1 we get
E(VkQJrl‘]:k)
= P <Y(Tii+1)/n2 < Ykn/n2‘fk>

o (e FE A e0)
n

Yv(g-i-l)/'n,2 < Yvk:n/n2 ’ fk)

B (Y 1y > anm)

1 k/n , n
<« F (n e le' G (W ‘2(’“'1)( ’“/”2+1/n)) ‘Y(Z+1)/n2 > Ykn/n2’ Fk)
1 1 W 1 % Z;j::/n (W) ))
2 mfy,:/n2 k) ) 2
1 R ]_ Z k/n g/(W” +n )
+< (Wn*Qk) Eﬂ —e \/_ =1 l n—2g /0
f Y2 \ n?

nKi—1

L 1 / (Wn
+ g lyy =0+ vy L =Kie v Zim & (Wgy)

k/2

~ nynn
= % (En (e\/QH Zl/:kl/n gl/(wg_gﬁm/n)) +e,% Zuz’“/ 51,( _Qk)>
2n

o ym2”
4 5/2£Yk/ 2 ( ‘2k> (—e RN él( n-2y)

+E77 (6 \le/ kl/n 51/(W2_2k+nl/n)>>

1 — T (W,
— -1 lyn v =1 Wiz,
+ OIS 2704— Yy 2=Ki€

_ 1 4 6*23)/}?/”2 (qukﬂh/n) n 672BYkn/n2—1/n(sz2k)
2n2 \""

—2Byn —1/n( — ) —2Byn (sz +771/n)
4 5/2§Yk/ 2 ( n 2k> <—e k/n? 2 +E, (6 k/n2 %k >>

1
— -1 — - lyn =
+ n2 Y/ 2_0 + n2 Yk/n2_K1

= Il,n,k + I2,'n,,k: + I3,n,k + I4,'n,,k: )

2BK1 l/n(W 7216)

Using the bounds from the proof of Lemma 5.1 it is easy to see that
[n?t]
Z (Lo + L3 g + Lapi) — 0,
k=1
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as n — 00. As for I, 1, again using the convergence of (W",Y"™) and the
continuity of B, it is easy to see that

|n?t] ¢ R
> Lk — / e 2P (Wdds, asn — oo,
k=1 0

and we are done. [ |

Corollary 5.3 As n — oo, M"™ converges to a continuous martingale M
such that

t -
(M)y = /Oe_QBys(Ws)ds, t>0. (5.3)

Proof: The continuity of M is immediate from the continuity of the lim-
iting process Y and Lemma 5.1. The rest is immediate from Lemma 5.2.

Corollary 5.4 There exists a Brownian motion (B such that

t .
M, = / e BsWodp,, t>o0. (5.4)
0

Proof: Immediate from the previous corollary.

Proof of Theorem 1.3: Immediate from Lemma 5.1, Corollary 5.3 and
Corollary 5.4. [ |

Finally, we describe the snake process when g is constant. The descrip-
tion for the general case, more specifically, the uniqueness of the solution
for the martingale problem (1.21) remains a challenging open problem.

When g is constant, say g = 1, we have that B;(x) = B, is a Brownian
motion with constant drift v. It follows from the martingale problem (1.21)
that

Y: t
/ ePrdr = f? - e*BKlﬁf(l + / eBstﬁs.
0 0

Therefore, Y; is the Brox diffusion reflected at 0 and K (see the Appendix
for a description when v = 0).

Next, we consider the conditional (given the lifetime process) path pro-
cess. Let w = (w,(y) be an element in W. Fix a € [0,(y,] and b > a.
Similar to LeGall ([9], p54), we define R, ;(w, dw') as the unique probability
measure on ¥ such that
(i) Cw =0b, Rgp(w,du’) as.
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(i) w'(t) = w(t) for all t < a, Ry p(w, dw’) a.s.

(iii) Under Ry p(w,dw’), (w'(a+1t): t €[0,b— a]) is a Brownian motion.
Denote the time set Q,, = {n"2k: k=0,1,2,--- }. From the construc-

tion of the discrete snake, it follows that W, s € @, is a conditional (given

Y™) Markov chain with transition probability

R (s, v (s (w, dw'), s< s €Qn,

where m"(s,s') = inf{Y"(r): r € [s,s] N Qn}.
Taking n — oo, we see that the limit {W;, s > 0} is a conditional
(given Y) Markov process with transition probability

Rys,sn v (s (w, dw'), s <5,

where m(s,s’) = inf{Y (r) : r € [s,s']}. Namely, it has the same conditional
law as LeGall’s Brownian snake.

6 Appendix: Convergence to a reflected Brox dif-
fusion

We provide in this appendix a short, direct proof of Corollary 1.5 that
bypasses the study of the branching process, relying instead on an embedding
of arandom walk in random environment (RWRE) into a diffusion in random
environment, in the spirit of [13]. For backround on Brownian motion in
random environments we refer to [2], [12], [15] and to the nice overview in
[13]. Background for RWRE can be found in [16].

Recall that a Brownian motion in random environment (BMRE) is a
process X; given by

1
dX, =dp, — §V’(Xt)dt, (6.1)
where (3; is a Brownian motion and V is called the random potential. When

V is itself a Brownian motion independent of (3, this (formal) process is the
Brox diffusion [2].

We need to consider reflecting BMRE’s. Let h be the periodic function
with period 2K and h(x) = |z| for |z| < K;. Let V' be a Brownian motion
on x € [0, K1] and set V(x) = V(h(x)) for = € R. Set formally

1.
aZ, = dp — 5V (Z)dt. (6.2)

(In case V' is not smooth, a precise meaning is given to (6.2) by the procedure
described in [13, Section 2]). Let Y; = h(Z;). A formal application of the
It6-Tanaka formula yields

Y, = W(Z)dzZ, +de)° —ae ™ (6.3)
14
= W(Z)dp — W(Z) 5V (Z)dt + ey — qer o

-1
= dj, — 5V/(Yt)dt +de) — aer
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where [ is a Brownian motion. To justify (6.3), one argues as follows. First,
an application of Ito’s formula for Dirichlet processes, see e.g. [6], gives that
for any g which is twice differentiable, and with Y = g(Z;),

QY9 = ¢ (Z))dZ: + %g”(Zt)dt. (6.4)
Now note that, by definition of the local time as the occupation time density,
the local times of Z and Y at levels 0 and K7 are equal up to multiplicative
constant 2. Therefore a standard approximation of A by smooth functions
g, together with (6.4), yields (6.3), provided that the local time étz’x of Z.
is jointly continuous in ¢ and x, the latter at x = 0 and z = K;. However,
th " is a continuous transformation of the local time of the Brownian motion
B: (see e.g. Equation (10) in [1] for an explicit formula which holds for any
environment—not necessarily for the two sided white noise), and thus is
jointly continuous in its arguments. This yields (6.3). Therefore, Y. is a
reflecting (at 0 and K;) Brox diffusion.

6.1 Embedding

In this subsection, we introduce an environment and represent Y™ as a
RWRE, which we then proceed (after scaling of the environment) to embed
in a diffusion in random environment.

Let the environment be given by a family {£" (i), i € Z4} of independent
random variables with mean 0 and variance 1. We further assume that
|€™(7)] < y/n. Define the potential V"(-) on Ry by

[z] 1_ Lfn(i)
2 4a/nc VY
Zlo I 1 eng)
st ovm
and set V" (z) = V" (nh(z/n)) and let Z" be the BMRE with potential V™.
Set Z"(t) = n=1Z™(n?t). Define the stopping times of = 0 and
O =nf{t >0y |Z7(t) — Z"(0o),)| = 1/n}.

By Schumacher’s theorem (cf. Schumacher [12] and Shi [13]), we have
Lemma 6.1 Let Z, = nZ"(o%), m = 0,1,2,---. Then Z" is a RWRE
with 1

pé (z;gH — i+ 1(2;3 - z) =5+ 75”(nh( i/n)),

where PS is the probability measure conditioned on the environment €.

The next proposition is crucial for the proof of Corollary 1.5.

Proposition 6.2 The sequence of processes { Lm2J ,t > 0} converges
n>1
weakly in Dg[0,00) to the process Z which satisfies (6.2).

44



Remark 6.3 Note that Y™ = h(Z"™) is a sequence of reflecting (at 0 and
nKi) RWRE such that
pé (Y. on o 1 LN
(YmH —zil‘Ym—z> = 5% gpC 0 i= LK -

and hence by the continuity of the function h and the discussion in the
beginning of the appendiz, in order to prove Corollary 1.5 it is sufficient to
prove Proposition 6.2.

The rest of the appendix is devoted to the proof of Proposition 6.2.
The following is a straight-forward consequence of Section 3 of [13].

Lemma 6.4 Z" is the Brownian motion in random environment with po-
tential V" (nx).

Proof: Let "
A = / V" Wy,
0

As Z" is the BMRE with potential V", it is well-known (see (2.3) in [13])

that fl}n 0 is a local martingale with quadratic variation ©"(t) such that

t T An
CHMG :/ ¢ 2V Ao w) qu.
0

We now rescale. Let

Then

. nZ”(n*Qt) \7"( ) Z”(n’Qt) V”( )
AZ"(t) = /0 e dz = n/o e’ "Wdy = nAYn 2.

Thus A7, ) is a local martingale with quadratic variation process ©"(t) =
n?©™(nt). Thus,

—2

n=<t T (AT t _otrm n
COMOE n2/ e ( AZ”(n‘Qu))du :/ e 2V (AZn ) oy
0 0

Therefore (see again (2.3) and (2.5) in [13]), Z" is the BMRE with potential
V™ (nz). ||
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6.2 Scaling limit

As was proved in the previous subsection (see Lemma 6.1), the scaled RWRE
is related to BMRE by

1 n n

In this section, we first prove that
Olp2g =, asn — oo, (6.6)

by the strong law of large numbers. Then, we prove that the scaled potential
for Z™ converges to V', and hence Z" converges to a BMRE with potential
V. This by (6.5) and (6.6) will provide the proof of Proposition 6.2.

Lemma 6.5 Asn — oo, we have
U%Qt] — t, a.s.

uniformly on compact sets.

Proof: By Proposition 3.2 in [13] (or a direct computation involving a
time change), we see that 0; = n*(c? — o™ ), i = 1,2,---, are i.i.d. with
the same distribution as

0 =inf{t >0: |W(t)| =1},

where W is a standard Brownian motion. Note that Ef = 1. By the strong
law of large numbers, we get that

uniformly on compacts. il

For the next lemma, recall that Z is the processes that satisfies (6.2).

Lemma 6.6 Asn — oo, Z" = Z weakly in Cr[0,c0).

Proof: First we consider the weak convergence of V"(nz). Note that

nx)

V*(nz) = €"(i) + o(1) = M} + o(1).

||M

\/7
Regarding = as the time-parameter, {M, = > 0} is a martingale with
predictable quadratic variation process

-Ea(izen) -
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uniformly on the compacts. Thus, by Theorem 4.13 ([7], P358), M™ con-
verges weakly in Dg[0, 00) to a Brownian motion V(z),z > 0. By switching
to another probability space if necessary, we may and will assume that all
weak convergences hold almost surely. Then we get, V"™(n-) — V, a.s.. Note
that by the continuity of A, we immediately get that

Vi(z) — V(z) = V(h(z)), a.s..
uniformly on the compacts of R;. Note that (see (2.6) in [13]),
ZM(t) = (A" THWr (T ),

where

A7 = / e,
0

e /t 20 (PA™) ) du.
0

and W™ is a Brownian motion. Since W™ trivially converges weakly to the
Brownian motion W, we assume as before that the convergence holds a.s..
Then we have

—>/ dy— as n — 0o,
and

() — / _2‘/ A;V(“) =T(t), as n — o0.

Note that all the convergence above are a.s. and uniform on compacts. We
see that

Z"(t) — Awl(T 1) = =Z(t). (6.7)
By stochastic calculus as in Section 2 of [13], it follows that (6.7) defines
a BMRE Z(t) with potential V. |

Now Proposition 6.2 follows from Lemmas 6.5, 6.6, and (6.5). Then as
we have mentioned already in Remark 6.3, Corollary 1.5 follows immediately
from Proposition 6.2.
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