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Abstract

We consider a nearest-neighbor, one dimensional random walk {Xn}n≥0 in a random i.i.d.
environment, in the regime where the walk is transient but with zero speed, so that Xn is of order
ns for some s < 1. Under the quenched law (i.e., conditioned on the environment), we show that
no limit laws are possible: there exist sequences {nk} and {xk} depending on the environment
only, such that Xnk

− xk = o(log nk)2 (a localized regime). On the other hand, there exist
sequences {tm} and {sm} depending on the environment only, such that log sm/ log tm → s < 1
and Pω(Xtm/sm ≤ x) → 1/2 for all x > 0 and → 0 for x ≤ 0 (a spread out regime).
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1 Introduction and Statement of Main Results

Let Ω = [0, 1]Z, and let F be the Borel σ−algebra on Ω. A random environment is an Ω-valued
random variable ω = {ωi}i∈Z with distribution P . In this paper we will assume that P is a
product measure on Ω.
The quenched law P x

ω for a random walk Xn in the environment ω is defined by

P x
ω (X0 = x) = 1, and P x

ω (Xn+1 = j|Xn = i) =

{

ωi if j = i + 1,

1 − ωi if j = i − 1.

Z
N is the space for the paths of the random walk {Xn}n∈N, and G denotes the σ−algebra

generated by the cylinder sets. Note that for each ω ∈ Ω, Pω is a probability measure on G, and
for each G ∈ G, P x

ω (G) : (Ω,F) → [0, 1] is a measurable function of ω. Expectations under the
law P x

ω are denoted Ex
ω.

The annealed law for the random walk in random environment Xn is defined by

P
x(F × G) =

∫

F

P x
ω (G)P (dω), F ∈ F , G ∈ G .
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For ease of notation we will use Pω and P in place of P 0
ω and P

0 respectively. We will also use
P

x to refer to the marginal on the space of paths, i.e. P
x(G) = P

x(Ω × G) = EP [P x
ω (G)] for

G ∈ G. Expectations under the law P will be written E.

A simple criterion for recurrence and a formula for the speed of transience was given by Solomon
in [14]. For any integers i ≤ j define

ρi :=
1 − ωi

ωi
, and Πi,j :=

j
∏

k=i

ρk , (1)

and for x ∈ Z define the hitting times

Tx := min{n ≥ 0 : Xn = x} .

Then, Xn is transient to the right (resp. to the left) if EP (log ρ0) < 0, (resp. EP log ρ0 > 0) and
recurrent if EP (log ρ0) = 0 (henceforth we will write ρ instead of ρ0 in expectations involving
only ρ0). In the case where EP log ρ < 0 (transience to the right), Solomon established the
following law of large numbers

vP := lim
n→∞

Xn

n
= lim

n→∞
n

Tn
=

1

ET1
, P − a.s.

For any integers i < j define

Wi,j :=

j
∑

k=i

Πk,j , and Wj :=
∑

k≤j

Πk,j . (2)

When EP log ρ < 0, it was shown in [14],[15] that

Ej
ωTj+1 = 1 + 2Wj < ∞, P − a.s., (3)

and thus vP = 1/(1 + 2EP W0). Since P is a product measure, EP W0 =
∑∞

k=1 (EP ρ)k. In
particular, vP = 0 if EP ρ ≥ 1.

Kesten, Kozlov, and Spitzer [10] determined the annealed limiting distribution of a RWRE
with EP log ρ < 0, i.e. transient to the right. They derived the limiting distributions for the
walk by first establishing a stable limit law of index s for Tn, where s is defined by the equation

EP ρs = 1 .

In particular, they showed that when s < 1 there exists a b > 0 such that

lim
n→∞

P

(

Tn

n1/s
≤ x

)

= Ls,b(x) ,

and

lim
n→∞

P

(

Xn

ns
≤ x

)

= 1 − Ls,b(x
−1/s), (4)

where Ls,b is the distribution function for a stable random variable with characteristic function

L̂s,b(t) = exp

{

−b|t|s
(

1 − i
t

|t| tan(πs/2)

)}

. (5)

The value of b was recently identified [4]. While the annealed limiting distributions for transient
one-dimensional RWRE have been known for quite a while, the corresponding quenched limiting
distributions have remained largely unstudied until recently. Goldsheid [7] and Peterson [13]
independently proved that when s > 2, a quenched CLT holds with a random (depending on the
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environment) centering. Previously, in [12] and [15] it was shown that the limiting statement
for the quenched CLT with random centering holds in probability rather than almost surely. No
other results of quenched limiting distributions are known when s ≤ 2.

In this paper, we analyze the quenched limiting distributions of a one-dimensional transient
RWRE in the case s < 1. One could expect that the quenched limiting distributions are of
the same type as the annealed limiting distributions since annealed probabilities are averages
of quenched probabilities. However, this turns out not to be the case. In fact, a consequence of
our main results, Theorems 1.1, 1.2, and 1.3 below, is that the annealed stable behavior of Tn

comes from fluctuations in the environment.
Throughout the paper, we will make the following assumptions:

Assumption 1. P is a product measure on Ω such that

EP log ρ < 0 and EP ρs = 1 for some s > 0. (6)

Assumption 2. There exists ρmax < ∞ such that P (ρ < ρmax) = 1, and the distribution of
log ρ is non-lattice under P .

Note: Since EP ργ is a convex function of γ, the two statements in (6) give that EP ργ < 1 for all
γ < s and EP ργ > 1 for all γ > s. Assumption 1 contains the essential assumption necessary for
the walk to be transient. The main results of this paper are for s < 1 (the zero-speed regime).
The technical conditions contained in Assumption 2 simplify our argument; we recall that the
non-lattice assumption was also invoked in [10].

Define the “ladder locations” νi of the environment by

ν0 = 0, and νi =

{

inf{n > νi−1 : Πνi−1,n−1 < 1}, i ≥ 1,

sup{j < νi+1 : Πk,j−1 < 1, ∀k < j}, i ≤ −1 .
(7)

Throughout the remainder of the paper we will let ν = ν1. We will sometimes refer to sections
of the environment between νi−1 and νi − 1 as “blocks” of the environment. Note that the
block between ν−1 and ν0 − 1 is different from all the other blocks between consecutive ladder
locations. Define the measure Q on environments by Q(·) := P (·|R), where the event

R := {ω ∈ Ω : Π−k,−1 < 1, ∀k ≥ 1}.

Note that P (R) > 0 since EP log ρ < 0. Q is defined so that the blocks of the environment
between ladder locations are i.i.d. under Q, all with distribution the same as that of the block
from 0 to ν − 1 under P . In Section 3 we prove the following annealed theorem:

Theorem 1.1. Let Assumptions 1 and 2 hold, and let s < 1. Then there exists a b′ > 0 such
that

lim
n→∞

Q

(

EωTνn

n1/s
≤ x

)

= Ls,b′(x).

We then use Theorem 1.1 to prove the following two theorems which show that P − a.s.
there exist two different random sequences of times (depending on the environment) where the
random walk has different limiting behavior. These are the main results of the paper.

Theorem 1.2. Let Assumptions 1 and 2 hold, and let s < 1. Then P -a.s. there exist random
subsequences tm = tm(ω) and um = um(ω), such that for any δ > 0,

lim
m→∞

Pω

(

Xtm − um

(log tm)2
∈ [−δ, δ]

)

= 1.

Theorem 1.3. Let Assumptions 1 and 2 hold, and let s < 1. Then P -a.s. there exists a random

subsequence nkm = nkm(ω) of nk = 22k

and a random sequence tm = tm(ω), such that

lim
m→∞

log tm
log nkm

=
1

s
,
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and

lim
m→∞

Pω

(

Xtm

nkm

≤ x

)

=

{

0 if x ≤ 0
1
2 if 0 < x < ∞

.

Note that Theorems 1.2 and 1.3 preclude the possiblity of a quenched analogue of the an-
nealed statement (4). It should be noted that in [6], Gantert and Shi prove that when s ≤ 1,
there exists a random sequence of times tm at which the local time of the random walk at a
single site is a positive fraction of tm. This is related to the statement of Theorem 1.2, but we
do not see a simple argument which directly implies Theorem 1.2 from the results of [6].

As in [10], limiting distributions for Xn arise from first studying limiting distributions for Tn.
Thus, to prove Theorem 1.3 we first prove that there exists random subsequences xm = xm(ω)
and vm,ω in which

lim
m→∞

Pω

(

Txm − EωTxm√
vm,ω

≤ y

)

=

∫ y

−∞

1√
2π

e−t2/2dt =: Φ(y) .

We actually prove a stronger statement than this in Theorem 5.7 below, where we prove that

all xm “near” a subsequence nkm of nk = 22k

have the same Gaussian behavior (what we mean
by “near” the subsequence nkm is made precise in the statement of the theorem).

The structure of the paper is as follows: In Section 2 we prove some introductory lemmas
which will be used throught the paper. Section 3 is devoted to proving Theorem 1.1. In Section
4 we use the latter to prove Theorem 1.2. In Section 5 we prove the existence of random
subsequences {nk} where Tnk

is approximately gaussian, and use this fact to prove Theorem
1.3. Section 6 contains the proof of the following technical theorem which is used throughout
the paper.

Theorem 1.4. Let Assumptions 1 and 2 hold. Then there exists a constant K∞ ∈ (0,∞) such
that

Q(EωTν > x) ∼ K∞x−s

The proof of Theorem 1.4 is based on results from [9] and mimics the proof of tail asymptotics
in [10].

2 Introductory Lemmas

Before proceeding with the proofs of the main theorems we mention a few easy lemmas which
will be used throughout the rest of the paper. Recall the definitions of Π1,k and Wi in (1) and
(2).

Lemma 2.1. For any c < −EP log ρ, there exist δc, Ac > 0 such that

P (Π1,k > e−ck) = P

(

1

k

k
∑

i=1

log ρi > −c

)

≤ Ace
−δck. (8)

Also, there exist constant C1, C2 > 0 such that P (ν > x) ≤ C1e
−C2x for all x ≥ 0.

Proof. First, note that due to Assumption 1, log ρ has negative mean and finite exponential
moments in a neighborhood of zero. If c < −EP log ρ, Cramér’s Theorem [3, Theorem 2.2.3]
then yields (8). By the definition of ν we have P (ν > x) ≤ P (Π0,⌊x⌋−1 ≥ 1), which together
with (8) completes the proof of the lemma.

From [9, Theorem 5], there exist constants K, K1 > 0 such that for all i

P (Wi > x) ∼ Kx−s, and P (Wi > x) ≤ K1x
−s . (9)

The tails of W−1, however, are different (under the measure Q), as the following lemma shows.
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Lemma 2.2. There exist constants C3, C4 > 0 such that Q(W−1 > x) ≤ C3e
−C4x for all x ≥ 0.

Proof. Since Πi,−1 < 1, Q − a.s. we have W−1 < k +
∑

i<−k Πi,−1 for any k > 0. Also, note

that from (8) we have Q(Π−k,−1 > e−ck) ≤ Ace
−δck/P (R). Thus,

Q(W−1 > x) ≤ Q





x

2
+

∞
∑

k= x
2

e−ck > x



+ Q
(

Π−k,−1 > e−ck, for some k ≥ x

2

)

≤ 1 x
2 + 1

1−e−c >x +
∞
∑

k= x
2

Q(Π−k,−1 > e−ck) ≤ 1 1

1−e−c > x
2

+ O
(

e−δcx/2
)

.

We also need a few more definitions that will be used throughout the paper. For any i ≤ k,

Ri,k :=

k
∑

j=i

Πi,j , and Ri :=

∞
∑

j=i

Πi,j . (10)

Note that since P is a product measure, Ri,k and Ri have the same distributions as Wi,k and
Wi respectively. In particular with K, K1 the same as in (9),

P (Ri > x) ∼ Kx−s, and P (Ri > x) ≤ K1x
−s . (11)

3 Stable Behavior of Expected Crossing Time

Recall from Theorem 1.4 that there exists K∞ > 0 such that Q(EωTν > x) ∼ K∞x−s. Thus
EωTν is in the domain of attraction of a stable distribution. Also, from the comments after the
definition of Q in the introduction it is evident that under Q, the environment ω is stationary
under shifts of the ladder times νi. Thus, under Q, {Eνi−1

ω Tνi}i∈Z is a stationary sequence of
random variables. Therefore, it is reasonable to expect that n−1/sEωTνn = n−1/s

∑n
i=1 E

νi−1
ω Tνi

converge in distribution to a stable distribution of index s. The main obstacle to proving this is
that the random variables E

νi−1
ω Tνi are not independent. This dependence, however, is rather

weak. The strategy of the proof of Theorem 1.1 is to first show that we need only consider the
blocks where the expected crossing time E

νi−1
ω Tνi is relatively large. These blocks will then be

separated enough to make the expected crossing times essentially independent.

For every k ∈ Z, define
Mk := max{Πνk−1,j : νk−1 ≤ j < νk}. (12)

Theorem 1 in [8] gives that there exists a constant C5 > 0 such that

Q(M1 > x) ∼ C5x
−s. (13)

Thus M1 and EωTν have similar tails under Q. We will now show that EωTν cannot be too
much larger than M1. From (3) we have that

EωTν = ν + 2

ν−1
∑

i=0

Wj = ν + 2W−1R0,ν−1 + 2

ν−1
∑

i=0

Ri,ν−1. (14)

From the definitions of ν and M1 we have that Ri,ν−1 ≤ (ν − i)M1 ≤ νM1 for any 0 ≤ i < ν.
Therefore, EωTν ≤ ν + 2W−1νM1 + 2ν2M1. Thus, given any 0 < α < β and δ > 0 we have

Q(EωTν > δnβ , M1 ≤ nα) ≤ Q(ν + 2W−1νnα + 2ν2nα > δnβ) (15)

≤ Q(W−1 > n(β−α)/2) + Q
(

ν2 > n(β−α)/2
)

= o
(

e−n(β−α)/5
)

,
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where the second inequality holds for all n large enough and the last equality is a result of
Lemmas 2.1 and 2.2. We now show that only the ladder times with Mk > n(1−ε)/s contribute
to the limiting distribution of n−1/sEωTνn .

Lemma 3.1. Assume s < 1. Then for any ε > 0 and any δ > 0 there exists an η > 0 such that

lim
n→∞

Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1Mi≤n(1−ε)/s > δn1/s

)

= o(n−η) .

Proof. First note that

Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1Mi≤n(1−ε)/s > δn1/s

)

≤ Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1E

νi−1
ω Tνi

≤n(1− ε
2
)/s > δn1/s

)

+ nQ
(

EωTν > n(1− ε
2 )/s, M1 ≤ n(1−ε)/s

)

.

By (15), the last term above decreases faster than any power of n. Thus it is enough to prove
that for any δ, ε > 0 there exists an η > 0 such that

Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1E

νi−1
ω Tνi

≤n(1−ε)/s > δn1/s

)

= o(n−η) .

Next, pick C ∈
(

1, 1
s

)

and let JC,ε,k,n :=
{

i ≤ n : n(1−Ckε)/s < E
νi−1
ω Tνi ≤ n(1−Ck−1ε)/s

}

. Let

k0 = k0(C, ε) be the smallest integer such that (1 − Ckε) ≤ 0. Then for any k < k0 we have

Q





∑

i∈JC,ε,k,n

Eνi−1
ω Tνi > δn1/s



 ≤ Q
(

#JC,ε,k,n > δn1/s−(1−Ck−1ε)/s
)

≤ nQ(EωTν > n(1−Ckε)/s)

δnCk−1ε/s
∼ K∞

δ
n−Ck−1ε( 1

s −C) ,

where the asymptotics in the last line above is from Theorem 1.4. Letting η = ε
2

(

1
s − C

)

we
have for any k < k0 that

Q





∑

i∈JC,ε,k,n

Eνi−1
ω Tνi > δn2/s



 = o(n−η). (16)

Finally, note that

Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1E

νi−1
ω Tνi

≤n(1−Ck0−1ε)/s ≥ δn1/s

)

≤ 1
n1+(1−Ck0−1ε)/s≥δn1/s . (17)

However, since Ck0ε ≥ 1 > Cs we have Ck0−1ε > s, which implies that the right side of (17)
vanishes for all n large enough. Therefore, combining (16) and (17) we have

Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1E

νi−1
ω ≤n(1−ε)/s > δn1/s

)

≤
k0−1
∑

k=1

Q





∑

i∈IC,ε,k,n

Eνi−1
ω Tνi >

δ

k0
n1/s





+ Q

(

n
∑

i=1

(Eνi−1
ω Tνi)1E

νi−1
ω Tνi

≤n(1−Ck0−1ε)/s ≥ δ

k0
n1/s

)

= o(n−η).
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In order to make the crossing times of the significant blocks essentially independent, we
introduce some reflections to the RWRE. For n = 1, 2, . . ., define

bn := ⌊log2(n)⌋. (18)

Let X̄
(n)
t be the random walk that is the same as Xt with the added condition that after reaching

νk the environment is modified by setting ωνk−bn
= 1 , i.e. never allow the walk to backtrack

more than log2(n) ladder times. Denote by T̄
(n)
x the corresponding hitting times. The following

lemmas show that we can add reflections to the random walk without changing the expected
crossing time by very much.

Lemma 3.2. There exist B, δ′ > 0 such that for any x > 0

Q
(

EωTν − EωT̄ (n)
ν > x

)

≤ B(x−s ∨ 1)e−δ′bn .

Proof. First, note that for any n the formula for EωT̄
(n)
ν is the same as for EωTν in (14) except

with ρν−bn
= 0. Thus EωTν can be written as

EωTν = EωT̄ (n)
ν + 2(1 + Wν−bn−1)Πν−bn ,−1R0,ν−1. (19)

Now, since ν−bn ≤ −bn we have

Q
(

Πν−bn ,−1 > e−cbn
)

≤
∞
∑

k=bn

Q
(

Π−k,−1 > e−ck
)

≤
∞
∑

k=bn

1

P (R)
P
(

Π−k,−1 > e−ck
)

.

Applying (8), we have that for any 0 < c < −EP log ρ there exist A′, δc > 0 such that
Q
(

Πν−bn ,−1 > e−cbn
)

≤ A′e−δcbn . Therefore, for any x > 0,

Q
(

EωTν − EωT̄ (n)
ν > x

)

≤ Q
(

2(1 + Wν−bn−1)Πν−bn ,−1R0,ν−1 > x
)

≤ Q
(

2(1 + Wν−bn−1)R0,ν−1 > xecbn
)

+ A′e−δcbn

= Q
(

2(1 + W−1)R0,ν−1 > xecbn
)

+ A′e−δcbn , (20)

where the equality in the second line is due to the fact that the blocks of the environment are
i.i.d under Q. Also, from (14) and Theorem 1.4 we have

Q
(

2(1 + W−1)R0,ν−1 > xecbn
)

≤ Q
(

EωTν > xecbn
)

∼ K∞x−se−csbn . (21)

Combining (20) and (21) finishes the proof.

Lemma 3.3. For any x > 0, ε > 0, and any integer n ≥ 1,

Q
(

EωT̄ (n)
ν > xn1/s, M1 > n(1−ε)/s

)

∼ K∞x−s 1

n
, as x → ∞. (22)

Proof. Since adding reflections only decreases the crossing times, we can get an upper bound
using Theorem 1.4, that is

Q
(

EωT̄ (n)
ν > xn1/s, M1 > n(1−ε)/s

)

≤ Q(EωTν > xn1/s) ∼ K∞x−s 1

n
, as x → ∞. (23)

To get a lower bound we first note that for any δ > 0,

Q
(

EωTν > (1 + δ)xn1/s
)

≤ Q
(

EωT̄ (n)
ν > xn1/s, M1 > n(1−ε)/s

)

+ Q
(

EωTν − EωT̄ (n)
ν > δxn1/s

)

+ Q
(

EωTν > (1 + δ)xn1/s, M1 ≤ n(1−ε)/s
)

≤ Q
(

EωT̄ (n)
ν > xn1/s, M1 > n(1−ε)/s

)

+ o(1/n), (24)

where the second inequality is from (15) and Lemma 3.2. The asymptotics in (22) then follow
from (23) and (24) by using Theorem 1.4 and then letting δ → 0.
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Our general strategy is to show that the partial sums

1

n1/s

n
∑

k=1

Eνk−1
ω T̄ (n)

νk
1Mk>n(1−ε)/s

converge in distribution to a stable law of parameter s. To establish this, we will need bounds on

the mixing properties of the sequence E
νk−1
ω T̄

(n)
νk 1Mk>n(1−ε)/s . As in [11], we say that an array

{ξn,k : k ∈ Z, n ∈ N} which is stationary in rows is α−mixing if limk→∞ lim supn→∞ αn(k) = 0,
where

αn(k) := sup {|P (A ∩ B) − P (A)P (B)| : A ∈ σ (. . . , ξn,−1, ξn,0) , B ∈ σ (ξn,k, ξn,k+1, . . .)} .

Lemma 3.4. For any 0 < ε < 1
2 , under the measure Q, the array of random variables

{Eνk−1
ω T̄

(n)
νk 1Mk>n(1−ε)/s}k∈Z,n∈N is α-mixing, with

sup
k∈[1,log2 n]

αn(k) = o(n−1+2ǫ), αn(k) = 0, ∀k > log2 n.

Proof. Fix ε ∈ (0, 1
2 ). For ease of notation, define ξn,k := E

νk−1
ω T̄

(n)
νk 1Mk>n(1−ε)/s . As we

mentioned before, under Q the environment is stationary under shifts of the sequence of ladder
locations and thus ξn,k is stationary in rows under Q.

If k > log2(n), then because of the reflections, σ (. . . , ξn,−1, ξn,0) and σ (ξn,k, ξn,k+1, . . .) are
independent and so αn(k) = 0. To handle the case when k ≤ log2(n), fix A ∈ σ (. . . , ξn,−1, ξn,0)
and B ∈ σ (ξn,k, ξn,k+1, . . .), and define the event

Cn,ε := {Mj ≤ n(1−ε)/s, for 1 ≤ j ≤ bn} = {ξn,j = 0, for 1 ≤ j ≤ bn}.

For any j > bn, we have that ξn,j only depends on the environment to the right of zero. Thus,

Q(A ∩ B ∩ Cn,ε) = Q(A)Q(B ∩ Cn,ε)

since B∩Cn,ε ∈ σ(ω0, ω1, . . .). Also, note that by (13) we have P (Cc
n,ε) ≤ bnQ(M1 > n(1−ε)/s) =

o(n−1+2ε). Therefore,

|Q(A ∩ B) − Q(A)Q(B)| ≤ |Q(A ∩ B) − Q(A ∩ B ∩ Cn,ε)|
+ |Q(A ∩ B ∩ Cn,ε) − Q(A)Q(B ∩ Cn,ε)|
+ Q(A)|Q(B ∩ Cn,ε) − Q(B)| ≤ 2Q(Cc

n,ε) = o(n−1+2ε)

Proof of Theorem 1.1.
First, we show that the partial sums

1

n1/s

n
∑

k=1

Eνk−1
ω T̄ (n)

νk
1Mk>n(1−ε)/s

converge in distribution to a stable random variable of parameter s. To this end, we will apply
[11, Theorem 5.1(III)]. We now verify the conditions of that theorem. The first condition that
needs to be satisfied is:

lim
n→∞

nQ
(

n−1/sEωT̄ (n)
ν 1M1>n(1−ε)/s > x

)

= K∞x−s.

However, this is exactly the content of Lemma 3.3.
Secondly, we need a sequence mn such that mn → ∞, mn = o(n) and nαn(mn) → 0 and such
that for any δ > 0,

lim
n→∞

mn
∑

k=1

nQ
(

EωT̄ (n)
ν 1M1>n(1−ε)/s > δn1/s, Eνk

ω T̄ (n)
νk+1

1Mk+1>n(1−ε)/s > δn1/s
)

= 0. (25)
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However, by the independence of M1 and Mk+1 for any k ≥ 1, the probability inside the sum
is less than Q(M1 > n(1−ε)/s)2. By (13) this last expression is ∼ C5n

−2+2ε. Thus letting
mn = n1/2−ε yields (25). (Note that by Lemma 3.4, nαn(mn) = 0 for all n large enough.)
Finally, we need to show that

lim
δ→0

lim sup
n→∞

nEQ

[

EωT̄ (n)
ν 1M1>n(1−ε)/s1

EωT̄
(n)
ν ≤δ

]

= 0 . (26)

Now, by (23) there exists a constant C6 > 0 such that for any x > 0,

Q
(

EωT̄ (n)
ν > xn1/s, M1 > n(1−ε)/s

)

≤ C6x
−s 1

n
.

Then using this we have

nEQ

[

EωT̄ (n)
ν 1M1>n(1−ε)/s1

EωT̄
(n)
ν ≤δ

]

= n

∫ δ

0

Q
(

EωT̄ (n)
ν > xn1/s, M1 > n(1−ε)/s

)

dx

≤ C6

∫ δ

0

x−sdx =
C6δ

1−s

1 − s
,

where the last integral is finite since s < 1. (26) follows.
Having checked all its hypotheses, [11, Theorem 5.1(III)] applies and yields that there exists

a b′ > 0 such that

Q

(

1

n1/s

n
∑

k=1

Eνk−1
ω T̄ (n)

νk
1Mk>n(1−ε)/s ≤ x

)

= Ls,b′(x) , (27)

where the characteristic function for the distribution Ls,b′ is given in (5). To get the limiting
distribution of 1

n1/s EωTνn we use (19) and re-write this as

1

n1/s
EωTνn =

1

n1/s

n
∑

k=1

Eνk−1
ω T̄ (n)

νk
1Mk>n(1−ε)/s (28)

+
1

n1/s

n
∑

k=1

Eνk−1
ω T̄ (n)

νk
1Mk≤n(1−ε)/s (29)

+
1

n1/s

(

EωTνn − EωT̄ (n)
νn

)

. (30)

Lemma 3.1 gives that (29) converges in distribution (under Q) to 0. Also, we can use Lemma
3.2 to show that (30) converges in distribution to 0 as well. Indeed, for any δ > 0

Q
(

EωTνn − EωT̄ (n)
νn

> δn1/s
)

≤ nQ
(

EωTν − EωT̄ (n)
ν > δn1/s−1

)

= O
(

nse−δ′bn

)

.

Therefore n−1/sEωTνn has the same limiting distribution (under Q) as the right side of (28),
which by (27) is an s-stable distribution with distribution function Ls,b′ .

4 Localization along a subsequence

The goal of this section is to show when s < 1 that P -a.s. there exists a subsequence tm = tm(ω)
of times such that the RWRE is essentially located in a section of the environment of length
log2(tm). This will essentially be done by finding a ladder time whose crossing time is much
larger than all the other ladder times before it. As a first step in this direction we prove that with
strictly positive probability this happens in the first n ladder locations. Recall the definition of
Mk, c.f. (12).
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Lemma 4.1. Assume s < 1. Then for any C > 1 we have

lim inf
n→∞

Q



∃k ∈ [1, n/2] : Mk ≥ C
∑

j:k 6=j≤n

Eνj−1
ω T̄ (n)

νj



 > 0 .

Proof. Recall that T̄
(n)
x is the hitting time of x by the RWRE modified so that it never backtracks

bn = ⌊log2(n)⌋ ladder locations.

To prove the lemma, first note that since C > 1 and E
νk−1
ω T̄

(n)
νk ≥ Mk there can only be at most

one k ≤ n with Mk ≥ C
∑

k 6=j≤n E
νj−1
ω T̄

(n)
νj . Therefore

Q



∃k ∈ [1, n/2] : Mk ≥ C
∑

k 6=j≤n

Eνj−1
ω T̄ (n)

νj



 =

n/2
∑

k=1

Q



Mk ≥ C
∑

k 6=j≤n

Eνj−1
ω T̄ (n)

νj



 (31)

Now, define the events

Fn := {νj − νj−1 ≤ bn, ∀j ∈ (−bn, n]}, Gk,n,ε := {Mj ≤ n(1−ε)/s, ∀j ∈ (k, k + bn]}. (32)

Fn and Gk,n,ε are both typical events. Indeed, from Lemma 2.1 Q(F c
n) ≤ (bn + n)Q(ν > bn) =

O(ne−C2bn), and from (13) we have Q(Gc
k,n,ε) ≤ bnQ(M1 > n(1−ε)/s) = o(n−1+2ε). Now, from

(3) adjusted for reflections we have for any j that

Eνj−1
ω T̄ (n)

νj
= (νj − νj−1) + 2

νj−1
∑

l=νj−1

Wνj−1−bn ,l

= (νj − νj−1) + 2
∑

νj−1≤i≤l<νj

Πi,l + 2
∑

νj−1−bn <i<νj−1≤l<νj

Πi,νj−1−1Πνj−1,l

≤ (νj − νj−1) + 2 (νj − νj−1)
2
Mj + 2(νj − νj−1)(νj−1 − νj−1−bn)Mj ,

where we used the fact that Πi,νj−1−1 < 1 for all i < νj−1 in the last inequality. Then, on the
event Fn ∩ Gk,n,ε we have for k + 1 ≤ j ≤ k + bn that

Eνj−1
ω T̄ (n)

νj
≤ bn + 2b2

nn(1−ε)/s + 2b3
nn(1−ε)/s ≤ 5b3

nn(1−ε)/s,

where for the first inequality we used that on the event Fn ∩Gk,n,ε we have νj − νj−1 ≤ bn and
M1 ≤ n(1−ε)/s. Then, using this we get

Q



Mk ≥ C
∑

k 6=j≤n

Eνj−1
ω T̄ (n)

νj



 ≥ Q
(

Mk ≥ C
(

EωT̄ (n)
νk−1

+ 5b4
nn(1−ε)/s + E

νk+bn
ω T̄ (n)

νn

)

, Fn, Gk,n,ε

)

≥ Q
(

Mk ≥ Cn1/s, νk − νk−1 ≤ bn

)

× Q
(

EωT̄ (n)
νk−1

+ 5b4
nn(1−ε)/s + E

νk+bn
ω T̄ (n)

νn
≤ n1/s, F̃n, Gk,n,ε

)

,

where F̃n := Fn\{νk − νk−1 ≤ bn}. In the last inequality we used the fact that E
νj−1
ω T̄

(n)
νj is

independent of Mk for j < k or j > k + bn. Note that we can replace F̃n by Fn in the last line
above becuase it will only make the probability smaller. Then, using the above and the fact

that EωT̄
(n)
νk−1 + E

νk+bn
ω T̄

(n)
νn ≤ EωTνn we have

Q



Mk ≥ C
∑

k 6=j≤n

Eνj−1
ω T̄ (n)

νj





≥ Q
(

Mk ≥ Cn1/s, νk − νk−1 ≤ bn

)

Q
(

EωTνn ≤ n1/s − 5bnn(1−ε)/s, Fn, Gk,n,ε

)

≥
(

Q(M1 ≥ Cn1/s) − Q(ν > bn)
)(

Q(EωTνn ≤ n1/s(1 − 5bnn−ε/s)) − Q(F c
n) − Q(Gc

k,n,ε)
)

∼ C5C
−sLs(1)

1

n
,
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where the asymptotics in the last line are from (13) and Theorem 1.1. Combining the last
display and (31) proves the lemma.

In Section 3, we showed that the proper scaling for EωTνn (or EωT̄
(n)
νn ) was n−1/s. The

following lemma gives a bound on the moderate deviations, under the measure P .

Lemma 4.2. Assume s ≤ 1. Then for any δ > 0,

P
(

EωTνn ≥ n1/s+δ
)

= o(n−δs/2) .

Proof. First, note that

P (EωTνn ≥ n1/s+δ) ≤ P (EωT2ν̄n ≥ n1/s+δ) + P (νn ≥ 2ν̄n) , (33)

where ν̄ := EP ν. To handle the second term on the right hand side of (33) we note that since νn

is the sum of n i.i.d. copies of ν1 and since ν has exponential tails we have that from Cramér’s
theorem [3, Theorem 2.2.3] that P (νn/n ≥ 2ν̄) = O(e−δ′n) for some δ′ > 0.
To handle the first term on the right hand side of (33) we note that for any γ < s we have
EP (EωT1)

γ < ∞ This follows from the fact that P (EωT1 > x) = P (1 + 2W0 > x) ∼ K2sx−s

by (3) and (9). Then, by Chebychev’s inequality and the fact that γ < s ≤ 1 we have

P
(

EωT2ν̄n ≥ n1/s+δ
)

≤
EP

(

∑2ν̄n
k=1 Ek−1

ω Tk

)γ

nγ(1/s+δ)
≤ 2ν̄nEP (EωT1)

γ

nγ(1/s+δ)
. (34)

Then, choosing γ arbititrarily close to s we can have that this last term is o(n−δs/2).

Throughout the remainder of the paper we will use the following subsequences of integers:

nk := 22k

, dk := nk − nk−1 (35)

Note that nk−1 =
√

nk and so dk ∼ nk as k → ∞.

Corollary 4.2.1. For any k define

µk := max
{

Eνj−1
ω T̄ (dk)

νj
: nk−1 < j ≤ nk

}

.

If s < 1, then

lim
k→∞

E
νnk−1
ω T̄

(dk)
νnk

− µk

EωT̄
(dk)
νnk

− µk

= 1, P − a.s.

Proof. Let ε > 0. Then,

P

(

E
νnk−1
ω T̄

(dk)
νnk

− µk

EωT̄
(dk)
νnk

− µk

≤ 1 − ε

)

= P

(

EωT̄
(dk)
νnk−1

EωT̄
(dk)
νnk

− µk

≥ ε

)

(36)

≤ P
(

EωT̄ (dk)
νnk−1

≥ n
1/s+δ
k−1

)

+ P
(

EωT̄ (dk)
νnk

− µk ≤ ε−1n
1/s+δ
k−1

)

.

Lemma 4.2 gives that P
(

EωT̄
(dk)
νnk−1

≥ n
1/s+δ
k−1

)

≥ P
(

EωTνnk−1
≥ n

1/s+δ
k−1

)

= o(n
−δs/2
k−1 ). To

handle the second term in the right side of (36), note that if δ < 1
3s , then the subsequence

nk grows fast enough such that for all k large enough n
1/s−δ
k ≥ ε−1n

1/s+δ
k−1 . Therefore, for k

sufficiently large and δ < 1
3s we have

P
(

EωT̄ (dk)
νnk

− µk ≤ ε−1n
1/s+δ
k−1

)

≤ P
(

EωT̄ (dk)
νnk

− µk ≤ n
1/s−δ
k

)

.

11



However, EωT̄
(dk)
νnk

− µk ≤ n
1/s−δ
k implies that Mj < E

νj−1
ω T̄

(dk)
νj ≤ n

1/s−δ
k for at least nk − 1 of

the j ≤ nk. Thus, since P (M1 > n
1/s−δ
k ) ∼ C5n

−1+δs
k , we have that

P
(

EωT̄ (dk)
νnk

− µk ≤ ε−1n
1/s+δ
k−1

)

≤ nk

(

1 − P
(

M1 > n
1/s−δ
k

))nk−1

= o(e−n
δs/2
k ) . (37)

Therefore, for any ε > 0 and δ < 1
3s we have that

P

(

E
νnk−1
ω T̄

(dk)
νnk

− µk

EωT̄
(dk)
νnk

− µk

≤ 1 − ε

)

= o
(

n
−δs/2
k−1

)

.

By our choice of nk, the sequence n
−δs/2
k−1 is summable in k. Applying the Borel-Cantelli lemma

completes the proof.

Corollary 4.2.2. Assume s < 1. Then P−a.s. there exists a random subsequence jm = jm(ω)
such that

Mjm ≥ m2EωT̄ (jm)
νjm−1

.

Proof. Recall the definitions of nk and dk in (4). Then for any C > 1, define the event

Dk,C :=
{

∃j ∈ (nk−1, nk−1 + dk/2] : Mj ≥ C
(

E
νnk−1
ω T̄ (dk)

νj−1
+ Eνj

ω T̄ (dk)
νnk

)}

.

Note that due to the reflections, the event Dk,C depends only on the environment from νnk−1−bnk

to νnk−1. Then, since nk−1 − bdk
> nk−2 for all k ≥ 4, we have that the events {D2k,C}∞k=2 are

all independent. Also, since the events do not involve the environment to the left of 0 they have
the same probability under Q as under P . Then since Q is stationary under shifts of νi we have
that for k ≥ 4,

P (Dk,C) = Q(Dk,C) = Q
(

∃j ∈ [1, dk/2] : Mj ≥ C
(

EωT̄ (dk)
νj−1

+ Eνj
ω T̄ (dk)

νdk

))

.

Thus for any C > 1, we have by Lemma 4.1 that lim infk→∞ P (Dk,C) > 0. This combined with
the fact that the events {D2k,C}∞k=2 are independent gives that for any C > 1 infinitely many of
the events D2k,C occur P − a.s. Therefore, there exists a subsequence km of integers such that
for each m, there exists jm ∈ (nkm−1, nkm−1 + dkm/2] such that

Mjm ≥ 2m2
(

E
νnkm−1
ω T̄

(dkm)
νjm−1 + E

νjm
ω T̄

(dkm )
νnkm

)

= 2m2
(

E
νnkm−1
ω T̄

(dkm )
νnkm

− µkm

)

,

where the second equality holds due to our choice of jm, which implies that µkm = E
νjm−1
ω T̄

(nkm )
νjm

.
Then, by Lemma 4.2.1 we have that for all m large enough,

Mjm ≥ 2m2
(

E
νkm−1
ω T̄

(dkm)
νnkm

− µkm

)

≥ m2
(

EωT̄
(dkm)
νnkm

− µkm

)

≥ m2E
νjm−1
ω T̄

(dkm)
νjm

,

where the last inequality is because µkm = E
νjm−1
ω T̄

(nkm )
νjm

. Now, for all k large enough we have
nk−1 + dk/2 < dk. Thus, we may assume (by possibly choosing a further subsequence) that
jm < dkm as well, and since allowing less backtracking only decreases the crossing time we have

Mjm ≥ m2EωT̄
(dkm)
νjm−1 ≥ m2EωT̄ (jm)

νjm−1
.

The following lemma shows that the reflections that we have been using this whole time
really do not affect the random walk. We prove a slightly more general version than we need
for this section because we will use this lemma again in Section 5.
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Lemma 4.3. Let mn be a sequence of integers such that nη = o(mn) for some η > 0. Then

lim
n→∞

Pω

(

Tνn 6= T̄ (mn)
νn

)

= 0, P − a.s.

Proof. Let ε > 0. By Chebychev’s inequality, P
(

Pω

(

Tνn 6= T̄
(mn)
νn

)

> ε
)

≤ ε−1
P

(

Tνn 6= T̄
(mn)
νn

)

.

Thus by the Borel-Cantelli lemma it is enough to prove that P

(

Tνn 6= T̄
(mn)
νn

)

is summable. Now,

the event {Tνn 6= T̄
(mn)
νn } implies that there is an i < νn such that after reaching i for the first

time, the random walk then backtracts a distance of bmn . Thus, again letting ν̄ = EP ν we have

P

(

Tνn 6= T̄ (mn)
νn

)

≤ P (νn ≥ 2ν̄n) +

2ν̄n
∑

i=0

P
i(Ti−bmn

< ∞) = P (νn ≥ 2ν̄n) + 2ν̄nP(T−bmn
< ∞)

As noted in Lemma 4.2, P (νn ≥ 2ν̄n) = O(e−δ′n), so we need only to show that nP(T−bmn
< ∞)

is summable. However, [6, Lemma 3.3] gives that there exists C9 such that for any k ≥ 1 ,

P(T−k < ∞) ≤ e−C9k . (38)

Thus nP(T−bmn
< ∞) ≤ ne−C9(bmn ) which is summable by our assumptions on mn.

We define the random variable Nt := max{k : ∃n ≤ t, Xn = νk} to be the maximum number
of ladder locations crossed by the random walk by time t.

Lemma 4.4.

lim
t→∞

νNt − Xt

log2(t)
= 0, P − a.s.

Proof. Let δ > 0. If we can show that
∑∞

t=1 P(|Nt − Xt| ≥ δ log2 t) < ∞, then by the Borel-
Cantelli lemma we will be done. Now, the only way that Nt and Xt can differ by more than
δ log2 t is if either one of the gaps between the first t ladder times is larger than δ log2 t or if for
some i < t the random walk backtracks log2 t steps after first reaching i. Thus,

P(|Nt − Xt| ≥ δ log2 t) ≤ P
(

∃j ∈ [1, t + 1] : νj − νj−1 > log2 t
)

+ tP(T−⌈δ log2 t⌉ < T1) (39)

So we need only to show that the two terms on the right hand side are summable. For the first
term we use Lemma 2.1 we note that

P
(

∃j ∈ [1, t + 1] : νj − νj−1 > log2 t
)

≤ (t + 1)P (ν > log2 t) ≤ (t + 1)C1e
−C2 log2 t ,

which is summable in t. By (38) the second term on the right side of (39) is also summable.

Proof of Theorem 1.2:

By Corollary 4.2.2, P -a.s there exists a subsequence jm(ω) with the property that Mjm ≥
m2EωT̄

(jm)
νjm−1 . Define tm = tm(ω) = 1

mMjm and um = um(ω) = νjm−1. Then,

Pω

(

Xtm − um

log2 tm
/∈ [−δ, δ]

)

≤ Pω(Ntm 6= jm − 1) + Pω(|νNtm
− Xtm | > δ log2 tm) .

From Lemma 4.4 the second term goes to zero as m → ∞. Thus, we only need to show that

lim
m→∞

Pω(Ntm = jm − 1) = 1. (40)

To see this first note that

Pω (Ntm < jm − 1) = Pω

(

Tνjm−1 > tm
)

≤ Pω

(

Tνjm−1 6= T̄ (jm)
νjm−1

)

+ Pω

(

T̄ (jm)
νjm−1

> tm

)

.
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By Lemma 4.3, Pω

(

Tνjm−1 6= T̄
(jm)
νjm−1

)

→ 0 as m → ∞, P − a.s. Also, by our definition of tm

and our choice of the subsequence jm we have

Pω

(

T̄ (jm)
νjm−1

> tm

)

≤ EωT̄
(jm)
νjm−1

tm
=

mEωT̄
(jm)
νjm−1

Mjm

≤ 1

m
−→

m→∞
0.

It still remains to show limm→∞ Pω (Ntm < jm) = 1. To prove this, first define the stopping
times T +

x := min{n > 0 : Xn = x}. Then,

Pω (Ntm < jm) = Pω(Tνjm
> tm) ≥ P

νjm−1
ω

(

Tνjm
>

1

m
Mjm

)

≥ P
νjm−1
ω

(

T +
νjm−1

< Tνjm

)
1
m Mjm

.

Then, using the hitting time calculations given in [15, (2.1.4)], we have that

P
νjm−1
ω

(

T +
νjm−1

< Tνjm

)

= 1 − 1 − ωνjm−1

Rνjm−1,νjm−1
.

Therefore, since Mjm ≤ Rνjm−1,νjm−1 we have

Pω (Ntm < jm) ≥
(

1 − 1 − ωνjm−1

Rνjm−1,νjm−1

)
1
m Mjm

≥
(

1 − 1

Mjm

)
1
m Mjm

−→
m→∞

1,

thus proving (40) and therefore the theorem.

5 Non-local behavior on a Random Subsequence

There are two main goals of this section. The first is to prove the existence of random subse-
quences xm where the hitting times Txm are approximately gaussian random variables. This
result is then used to prove the existence of random times tm(ω) in which the scaling for the
random walk is of the order tsm instead of log2 tm as in Theorem 1.2. However, before we can
begin proving a quenched CLT for the hitting times Tn (at least along a random subsequence),
we first need to understand the tail asymptotics of V arωTν := Eω((Tν −EwTν)2), the quenched
variance of Tν.

5.1 Tail Asymptotics of Q(V arωTν > x)

The goal of this subsection is to prove the following theorem:

Theorem 5.1. Let Assumptions 1 and 2 hold. Then with K∞ > 0 the same as in Theorem
1.4, we have

Q (V arωTν > x) ∼ Q
(

(EωTν)2 > x
)

∼ K∞x−s/2 as x → ∞, (41)

and for any ε > 0 and x > 0,

Q
(

V arωT̄ (n)
ν > xn2/s, M1 > n(1−ε)/s

)

∼ K∞x−s/2 1

n
as n → ∞. (42)

Consequently,

Q
(

V arωTν > δn1/s, M1 ≤ n(1−ε)/s
)

= o(n−1) . (43)

A formula for the quenched variance of crossing times is given in [7, (2.2)]. Translating to
our notation and simplifying we have the formula

V arωT1 := Eω(T1 − EωT1)
2 = 4(W0 + W 2

0 ) + 8
∑

i<0

Πi+1,0(Wi + W 2
i ) . (44)
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Now, given the environment the crossing times Tj − Tj−1 are independent. Thus we get the
formula

V arωTν = 4

ν−1
∑

j=0

(Wj + W 2
j ) + 8

ν−1
∑

j=0

∑

i<j

Πi+1,j(Wi + W 2
i )

= 4

ν−1
∑

j=0

(Wj + W 2
j ) + 8R0,ν−1

(

W−1 + W 2
−1 +

∑

i<−1

Πi+1,−1(Wi + W 2
i )

)

+ 8
∑

0≤i<j<ν

Πi+1,j(Wi + W 2
i ).

In particular, V arωT̄
(n)
ν ≤ V arωTν, because the same expansion for V arωT̄

(n)
ν is obtained by

replacing Wi by Wν−bn +1,i and restricting the final sum in the second line to ν−bn < i < −1.
We want to analyze the tails of V arωTν by comparison with (EωTν)2. Using (14) we have

(EωTν)2 =



ν + 2

ν−1
∑

j=0

Wj





2

= ν2 + 4ν

ν−1
∑

j=0

Wj + 4

ν−1
∑

j=0

W 2
j + 8

∑

0≤i<j<ν

WiWj .

Thus, we have

(EωTν)2 − V arωTν = ν2 + 4(ν − 1)
ν−1
∑

j=0

Wj + 8
∑

0≤i<j<ν

Wi (Wj − Πi+1,j − Πi+1,jWi) (45)

− 8R0,ν−1

(

W−1 + W 2
−1 +

∑

i<−1

Πi+1,−1(Wi + W 2
i )

)

(46)

=: D+(ω) − 8R0,ν−1D
−(ω) . (47)

The next few lemmas show that the tails of D+(ω) and R0,ν−1D
−(ω) are much smaller than

the tails of (EωTν)2.

Lemma 5.2. For any ε > 0, we have Q (D+(ω) > x) = o(x−s+ε).

Proof. Notice first of all that that from (14) we have ν2 +4(ν−1)
∑ν−1

j=0 Wj ≤ 2νEωTν . Also we
can re-write Wj −Πi+1,j −Πi+1,jWi = Wi+2,j when i < j −1 (this term is zero when i = j−1).
Therefore,

Q
(

D+(ω) > x
)

≤ Q(2νEωTν > x/2) + Q





ν−3
∑

i=0

ν−1
∑

j=i+2

WiWi+2,j > x/2



 .

Lemma 2.1 and Theorem 2.1 give that Q (2νEωTν > x) ≤ Q(2ν > log2(x))+Q
(

EωTν > x
log2(x)

)

=

o(x−s+ε) for any ε > 0. Thus we need only prove that Q
(

∑ν−3
i=0

∑ν−1
j=i+2 WiWi+2,j > x

)

=

o(x−s+ε) for any ε > 0. Note that for i < ν we have Wi = W0,i + Π0,iW−1 ≤ Π0,i(i + W−1),
thus

Q





ν−3
∑

i=0

ν−1
∑

j=i+2

WiWi+2,j > x



 ≤ Q



(ν + W−1)

ν−3
∑

i=0

ν−1
∑

j=i+2

Π0,iWi+2,j > x





≤ Q(ν > log2(x)/2) + Q(W−1 > log2(x)/2) (48)

+

log2(x)−3
∑

i=0

log2(x)−1
∑

j=i+2

P

(

Π0,iWi+2,j >
x

log6(x)

)

, (49)
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where we were able to switch to P instead of Q in the last line because the event inside the
probability only concerns the environment to the right of 0. Now, Lemmas 2.1 and 2.2 give that
(48) is o(x−s+ε) for any ε > 0, so we need only to consider (49). Under the measure P we have
that Π0,i and Wi+2,j are independent, and by (9) we have P (Wi+2,j > x) ≤ P (Wi+2 > x) ≤
K1x

−s. Thus,

P

(

Π0,iWi+2,j >
x

log6(x)

)

= EP

[

P

(

Wi+2,j >
x

log6(x)Π0,i

∣

∣

∣

∣

∣

Π0,i

)]

≤ K1 log6s(x)x−sEP [Πs
0,i] .

Then because EP Πs
0,i = (EP ρs)i = 1 by Assumption 1, we have

log2(x)−3
∑

i=0

log2(x)−1
∑

j=i+2

P

(

Π0,iWi+2,j >
x

log6(x)

)

≤ K1 log4+6s(x)x−s = o(x−s+ε) .

Lemma 5.3. For any ε > 0,

Q
(

D−(ω) > x
)

= o(x−s+ε), (50)

and thus for any γ < s,
EQD−(ω)γ < ∞. (51)

Proof. It is obvious that (50) implies (51) and so we will only prove the former. Write

D−(ω) = W−1 + W 2
−1 +

∑

i<−1

Πi+1,−1(Wi + W 2
i ) =

∑

i≤−1

∑

k≤i

Πk,−1

(

1 + Πk,i +
∑

l<k

Πl,i

)

. (52)

Next, for any c > 0 and n ∈ N consider the event

Ec,n :=
{

Πj,i < e−c(i−j+1), ∀ − n ≤ i ≤ −1, ∀j < i − n
}

=
⋂

−n≤i≤−1

⋂

j<i−n

{Πj,i < e−c(i−j+1)}.

Now, under the measure Q we have that Πk,−1 < 1 for all k ≤ −1, and thus on the event Ec,n

we have

∑

i≤−1

∑

k≤i

Πk,−1

(

1 + Πk,i +
∑

l<k

Πl,i

)

≤ n2 +
e2c − ec + 1

(ec − 1)3
+ (1 + n)

∑

−n≤i≤−1

Wi +
∑

i<−n

eciWi.

(53)

Applying Lemma 2.1 with c < −EP log(ρ), we have that for all i ≤ j,

Q(Πi,j > e−c(j−i+1)) ≤ 1

P (R)
P (Πi,j > e−c(j−i+1)) ≤ Ac

P (R)
e−δc(j−i+1).

Therefore,

Q(Ec
c,n) ≤

∑

−n≤i≤−1

∑

j<i−n

Q(Πi,j > e−c(i−j+1)) ≤ nAce
−δc(n+2)

P (R)(1 − e−δc)
= o(e−δcn/2). (54)

Then, using (53) with n = ⌊log2 x⌋ =: bx we have

Q





∑

i≤−1

∑

k≤i

Πk,−1

(

1 + Πk,i +
∑

l<k

Πl,i

)

> x



 (55)

≤ Q
(

Ec
c,bx

)

+ 1{b2x+ e2c
−ec+1

(ec
−1)3

>x/3} + Q





∑

−bx≤i≤−1

Wi >
x

3(1 + bx)



+ Q

(

∑

i<−1

eciWi >
x

3

)

.
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If we choose 0 < c < −EP log ρ, then applying (54) we have that the first two terms are
decreasing in x of order o(e−δcbx/2) = o(x−s+ε). To handle last two terms in the right side of
(55), note first that from (9), Q (Wi > x) ≤ 1

P (R)P (Wi > x) = K1

P (R)x
−s for any x > 0 and any

i. Thus,

Q





∑

−bx≤i≤−1

Wi >
x

3(1 + bx)



 ≤
∑

−bx≤i≤−1

Q

(

Wi >
x

3(1 + bx)bx

)

= o(x−s+ε),

and since
∑∞

i=1 e−ci/2 = (ec/2 − 1)−1, we have

Q

(

∑

i<−1

eciWi >
x

3

)

= Q

( ∞
∑

i=1

e−ciW−i >
x

3
(ec/2 − 1)

∞
∑

i=1

e−ci/2

)

≤
∞
∑

i=1

Q
(

W−i >
x

3
(ec/2 − 1)eci/2

)

≤ K13
s

P (R)(ec/2 − 1)s
x−s

∞
∑

i=1

e−csi/2 = O(x−s) .

Corollary 5.3.1. For any ε > 0, Q (R0,ν−1D
−(ω) > x) = o(x−s+ε).

Proof. From (11) it is easy to see that for any γ < s there exists a Kγ > 0 such that P (R0,ν−1 >
x) ≤ P (R0 > x) ≤ Kγx−γ . Then, letting F−1 = σ(. . . , ω−2, ω−1) we have that

Q
(

R0,ν−1D
−(ω) > x

)

= EQ

[

Q

(

R0,ν−1 >
x

D−(ω)

∣

∣

∣

∣

F−1

)]

≤ Kγx−γEQ

(

D−(ω)
)γ

.

Since γ < s, the expectation in the last expression is finite by (51). Choosing γ = s− ε
2 finishes

the proof.

Proof of Theorem 5.1:

Recall from (47) that

(EωTν)
2 − D+(ω) ≤ V arωTν ≤ (EωTν)

2
+ 8R0,ν−1D

−(ω) . (56)

The lower bound in (56) gives that for any δ > 0,

Q(V arωTν > x) ≥ Q
(

(EωTν)2 > (1 + δ)x
)

− Q
(

D+(ω) > δx
)

.

Thus, from Lemma 5.2 and Theorem 1.4 we have that

lim
x→∞

xs/2Q(V arωTν > x) ≥ K∞(1 + δ)−s/2 . (57)

Similarly, the upper bound in (56) and Corollary 5.3.1 give that for any δ > 0,

Q(V arωTν > x) ≤ Q
(

(EωTν)2 > (1 − δ)x
)

+ Q
(

8R0,ν−1D
−(ω) > δx

)

,

and then Corollary 5.3.1 and Theorem 1.4 give

lim
x→∞

xs/2Q(V arωTν > x) ≤ K∞(1 − δ)−s/2x−s/2 . (58)

Letting δ → 0 in (57) and (58) finishes the proof of (41).
Essentially the same proof works for (42). The difference is that when evaluating the difference

(EωT̄
(n)
ν )2 − V arωT̄

(n)
ν the upper and lower bounds in (45) and (46) are smaller in absolute
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value. This is because every instance of Wi is replaced by Wν−bn +1,i ≤ Wi and the sum in (46)
is taken only over ν−bn < i < −1. Therefore, the following bounds still hold:

(

EωT̄ (n)
ν

)2

− D+(ω) ≤ V arωT̄ (n)
ν ≤

(

EωT̄ (n)
ν

)2

+ 8R0,ν−1D
−(ω) . (59)

The rest of the proof then follows in the same manner, noting that from Lemma 3.3 we have

Q

(

(

EωT̄
(n)
ν

)2

> xn2/s, M1 > n(1−ε)/s

)

∼ K∞x−s/2 1
n , as n → ∞.

5.2 Existence of Random Subsequence of Non-localized Behavior

Introduce the notation:

µi,n,ω := Eνi−1
ω T̄ (n)

νi
, σ2

i,n,ω := Eνi−1
ω

(

T̄ (n)
νi

− µi,n,ω

)2

= V arω

(

T̄ (n)
νi

− T̄ (n)
νi−1

)

. (60)

The first goal of this subsection is to prove a CLT (along random subsequences) for the hitting
times Tn. We begin by showing that for any ε > 0 only the crossing times of ladder times
with Mk > n(1−ε)/s are relevant in the limiting distribution, at least along a sparse enough
subsequence.

Lemma 5.4. Assume s < 2. Then for any ε, δ > 0 there exists an η > 0 such that for any
integer m

Q

(

n
∑

i=1

σ2
i,m,ω1Mi≤n(1−ε)/s > δn2/s

)

= o(n−η) .

Proof. First, we need an bound on the probability of V arωT̄
(m)
ν being much larger than M1.

Note that from (56) we have V arωTν ≤ (EωTν)2 + 8R0,ν−1D
−(ω). Then, since R0,ν−1 ≤ νM1

we have

Q
(

V arωTν > n2β , M1 ≤ nα
)

≤ Q

(

EωTν >
nβ

√
2
, M1 ≤ nα

)

+ Q

(

8νD−(ω) >
nβ−α

2

)

.

By (15), the first term on the right is o(e−n(β−α)/5

). To bound the second term on the right we
use Lemmas 2.1 and 5.3.1 to get that for any α < β

Q

(

8νD−(ω) >
nβ−α

2

)

≤ Q(ν > log2 n) + Q

(

D−(ω) >
n2β−α

16 log2 n

)

= o(n− s
2 (3β−α)) .

Therefore, similarly to (15) we have the bound

Q
(

V arωTν > n2β , M1 ≤ nα
)

= o(n− s
2 (3β−α)) . (61)

The rest of the proof is similar to the proof of Lemma 3.1. First, from (61),

Q

(

n
∑

i=1

σ2
i,m,ω1Mi≤n(1−ε)/s > δn2/s

)

≤ Q

(

n
∑

i=1

σ2
i,m,ω1

σi,m,ω≤n(1− ε
4
)/s > δn2/s

)

+ nQ
(

V arωT̄ (m)
ν > n2(1− ε

4 )/s, M1 ≤ n(1−ε)/s
)

= Q

(

n
∑

i=1

σ2
i,m,ω1

σi,m,ω≤n(1− ε
4
)/s > δn2/s

)

+ o(n−ε/8) .

Therefore, it is enough to prove that for any δ, ε > 0 there exists η > 0 such that

Q

(

n
∑

i=1

σ2
i,m,ω1σi,m,ω≤n(1−ε)/s > δn2/s

)

= o(n−η) .
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We prove the above statement by choosing C ∈ (1, 2
s ) and then using Theorem 5.1 to get bounds

the size of the set
{

i ≤ n : σ2
i,m,ω ∈ (n2(1−εCk)/s, n2(1−εCk−1)/s]

}

for all k small enough so that

εCk < 1. This portion of the proof is similar to that of Lemma 3.1 and thus will be omitted.

Corollary 5.4.1. Assume s < 2. Then there exists an η′ > 0 such that for any m ≤ n and any
δ > 0,

Q

(∣

∣

∣

∣

∣

n
∑

i=1

(

σ2
i,m,ω − µ2

i,m,ω

)

∣

∣

∣

∣

∣

≥ δn2/s

)

= o(n−η′

) .

Proof. For any ε > 0

Q

(∣

∣

∣

∣

∣

n
∑

i=1

(

σ2
i,m,ω − µ2

i,m,ω

)

∣

∣

∣

∣

∣

≥ δn2/s

)

≤ Q

(

n
∑

i=1

σ2
i,n,ω1Mi≤n(1−ε)/s ≥ δ

3
n2/s

)

(62)

+ Q

(

n
∑

i=1

µ2
i,n,ω1Mi≤n(1−ε)/s ≥ δ

3
n2/s

)

(63)

+ Q

(

n
∑

i=1

∣

∣σ2
i,m,ω − µ2

i,m,ω

∣

∣ 1Mi>n(1−ε)/s ≥ δ

3
n2/s

)

.

(64)

Lemma 5.4 gives that (62) decreases polynomially in n. Also, essentially the same proof as in
Lemmas 5.4 and 3.1 can be used to show that (63) also decreases polynomially in n. Finally
(64) is bounded above by

Q
(

#
{

i ≤ n : Mi > n(1−ε)/s
}

> n2ε
)

+ nQ

(

∣

∣

∣V arωT̄ (m)
ν − (EωT̄ (m)

ν )2
∣

∣

∣ ≥ δ

3
n2/s−2ε

)

,

and since by (13), Q
(

#
{

i ≤ n : Mi > n(1−ε)/s
}

> n2ε
)

≤ nQ(M1>n(1−ε)/s)
n2ε ∼ C5n

−ε we need
only show that the second term above is decreasing faster than a power of n. However, from (59)

we have
∣

∣

∣V arωT̄
(m)
ν − (EωT̄

(m)
ν )2

∣

∣

∣ ≤ D+(ω) + 8R0,ν−1D
−(ω). Thus, Lemma 5.2 and Corollary

5.3.1 give that Q
(∣

∣

∣V arωT̄
(m)
ν − (EωT̄

(m)
ν )2

∣

∣

∣ > x
)

= o(x−s+ε′

) for any ε′ > 0. Thus, for ε < 1
4s ,

nQ

(

∣

∣

∣V arωT̄ (m)
ν − (EωT̄ (m)

ν )2
∣

∣

∣ ≥ δ

3
n2/s−2ε

)

= o(n−1+4εs) ,

which finishes the proof.

Since Tνn =
∑n

i=1(Tνi − Tνi−1) is the sum of independent (quenched) random variables, in
order to prove a CLT we cannot have any of the first n crossing times of blocks dominating
all the others (note this is exactly what happens in the localization behavior we saw in Section
4). Thus, we look for a random subsequence where none of the crossing times of blocks are
dominant. Now, for any δ ∈ (0, 1] and any positive integer a < n/2 define the event

Sδ,n,a :=
{

#
{

i ≤ δn : µ2
i,n,ω ∈ [n2/s, 2n2/s)

}

= 2a, µ2
j,n,ω < 2n2/s ∀j ≤ δn

}

.

On the event Sδ,n,a, 2a of the first δn crossings times from νi−1 to νi have roughly the same size
expected crossing times µi,n,ω, and the rest are all smaller (we work with µ2

i,n,ω instead of µi,n,ω

so that comparisons with σ2
i,n,ω are slightly easier). We want a lower bound on the probability of

Sδ,n,a. The difficulty in getting a lower bound is that the µ2
i,n,ω are not independent. However,

we can force all the large crossing times to be independent by forcing them to be separated by
at least bn ladder locations.
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Let Iδ,n,a be the collection of all subsets I of [1, δn] ∩ Z of size 2a with the property that
any two distinct points in I are separated by at least 2bn. Also, define the event

Ai,n :=
{

µ2
i,n,ω ∈

[

n2/s, 2n2/s
)}

.

Then, we begin with a simple lower bound.

Q(Sδ,n,a) ≥ Q





⋃

I∈Iδ,n,a





⋂

i∈I

Ai,n

⋂

j∈[1,δn]\I

{

µ2
j,n,ω < n2/s

}









=
∑

I∈Iδ,n,a

Q





⋂

i∈I

Ai,n

⋂

j∈[1,δn]\I

{

µ2
j,n,ω < n2/s

}



 . (65)

Now, recall the definition of the event Gi,n,ε from (32), and define the event

Hi,n,ε :=
{

Mj ≤ n(1−ε)/s for all j ∈ [i − bn, i)
}

.

Also, for any I ⊂ Z let d(j, I) := min{|j − i| : i ∈ I} be the minimum distance from j to the set
I. Then, with minimal cost, we can assume that for any I ∈ Iδ,n,a and any ε > 0 that all j /∈ I
such that d(j, I) ≤ bn have Mj ≤ n(1−ε)/s. Indeed,

Q

(

⋂

i∈I

Ai,n

⋂

j∈[1,δn]\I

{

µ2
j,n,ω < n2/s

}





≥ Q





⋂

i∈I

(Ai,n ∩ Gi,n,ε ∩ Hi,n,ε)
⋂

j∈[1,δn]:d(j,I)>bn

{

µ2
j,n,ω < n2/s

}





− Q





⋃

j /∈I,d(j,I)≤bn

{

µ2
j,n,ω > n2/s, Mj ≤ n(1−ε)/s

}





≥
∏

i∈I

Q(Ai,n ∩ Hi,n,ε)Q





⋂

i∈I

Gi,n,ε

⋂

j∈[1,δn]:d(j,I)>bn

{

µ2
j,n,ω < n2/s

}





− 4abnQ
(

EωTν > n1/s, M1 ≤ n(1−ε)/s
)

. (66)

From Theorem 1.4 and Lemma 3.3 we have Q(Ai,n) ∼ K∞(1 − 2−s/2)n−1. We wish to show
the same asymptotics are true for Q(Ai,n ∩ Hi,n,ε) as well. From (13) we have Q(Hc

i,n,ε) ≤
bnQ(M1 > n(1−ε)/s) = o(n−1+2ε). Applying this, along with (13) and (15), gives that for ε > 0,

Q(Ai,n) ≤ Q(Ai,n ∩ Hi,n,ε) + Q
(

M1 > n(1−ε)/s
)

Q(Hc
i,n,ε) + Q

(

EωTν > n1/s, M1 ≤ n(1−ε)/s
)

= Q(Ai,n ∩ Hi,n,ε) + o(n−2+3ε) + o(e−nε/(5s)

) .

Thus, for any ε < 1
3 there exists a Cε > 0 such that

Q(Ai,n ∩ Hi,n,ε) ≥ Cεn
−1. (67)

To handle the next probability in (66), note that

Q





⋂

i∈I

Gi,n,ε

⋂

j∈[1,δn]:d(j,I)>bn

{

µ2
j,n,ω < n2/s

}



 ≥ Q





⋂

j∈[1,δn]

{

µ2
j,n,ω < n2/s

}



− Q

(

⋃

i∈I

Gc
i,n,ε

)

≥ Q
(

EωTνn < n1/s
)

− 2aQ(Gc
i,n,ε)

= Q
(

EωTνn < n1/s
)

− ao(n−1+2ε) . (68)
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Finally, from (15) we have 4abnQ
(

EωTν > n1/s, M1 ≤ n(1−ε)/s
)

= ao
(

e−nε/(6s)
)

. This, along

with (67) and (68) applied to (65) gives

Q (Sδ,n,a) ≥ #(Iδ,n,a)
[

(

Cεn
−1
)2a
(

Q
(

EωTνn < n1/s
)

− ao(n−1+2ε)
)

− ao
(

e−nε/(6s)
)]

.

An obvious upper bound for #(Iδ,n,a) is
(

δn
2a

)

≤ (δn)2a

(2a)! . To get a lower bound on #(Iδ,n,a) we

note that any set I ∈ Iδ,n,a can be chosen in the following way: first choose an integer i1 ∈ [1, δn]
(δn ways to do this). Then, choose an integer i2 ∈ [1, δn]\{j ∈ Z : |j − i1| ≤ 2bn} (at least
δn− 1 − 4bn ways to do this). Continue this process until 2a integers have been chosen. When
choosing ij, there will be at least δn− (j − 1)(1 + 4bn) integers available. Then, since there are
(2a)! orders in which to choose each set if 2a integers we have

(δn)2a

(2a)!
≥ #(Iδ,n,a) ≥ 1

(2a)!

2a
∏

j=1

(δn − (j − 1)(1 + 4bn)) ≥ (δn)2a

(2a)!

(

1 − (2a − 1)(1 + 4bn)

δn

)2a

.

Therefore, applying the upper and lower bounds on #(Iδ,n,a) we get

Q (Sδ,n,a) ≥ (δCε)
2a

(2a)!

(

1 − (2a − 1)(1 + 4bn)

δn

)2a
(

Q
(

EωTνn < n1/s
)

− ao(n−1+2ε)
)

− (δn)2a

(2a)!
ao
(

e−nε/(6s)
)

.

Recall the definitions of dk in (4) and define

ak := ⌊log log k⌋ ∨ 1, and δk := a−1
k . (69)

Now, replacing δ, n and a in the above by δk, dk and ak respectively we have

Q (Sδk,dk,ak
) ≥ (δkCε)

2ak

(2ak)!

(

1 − (2ak − 1)(1 + 4bdk
)

δkdk

)2ak (

Q
(

EωTνdk
< d

1/s
k

)

− ako(d−1+2ε
k )

)

− (δkdk)2ak

(2ak)!
ako

(

e−d
ε/(6s)
k

)

≥ (δkCε)
2ak

(2ak)!
(1 + o(1)) (Ls,b′(1) − o(1)) − o(1). (70)

The last inequality is a result of the definitions of δk, ak, and dk (it’s enough to recall that

dk ≥ 22k−1

, ak ∼ log log k, and δk ∼ 1
log log k ), as well as Theorem 1.1. Also, since δk = a−1

k we

get from Sterling’s formula that (δkCε)2ak

(2ak)! ∼ (Cεe/2)2ak√
2πak

. Thus since ak ∼ log log k, we have that

1
k = o

(

(δkCε)2ak

(2ak)!

)

. This, along with (70), gives that Q (Sδk,dk,ak
) > 1

k for all k large enough.

We now have a good lower bound on the probability of not having any of the crossing times of
the first δkdk blocks dominating all the others. However for the purpose of proving Theorem
1.3 we need a little bit more. We also need that none of the crossing times of succeeding blocks
are too large either. Thus, for any 0 < δ < c and n ∈ N define the events

Uδ,n,c :=

{

cn
∑

i=δn+1

µi,n,ω ≤ 2n1/s

}

, Ũδ,n,c :=

{

cn
∑

i=δn+bn+1

µi,n,ω ≤ n1/s

}

.

Lemma 5.5. Assume s < 1. Then there exists a sequence ck → ∞, ck = o(log ak) such that

∞
∑

k=1

Q (Sδk,dk,ak
∩ Uδk,dk,ck

) = ∞ .
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Proof. For any δ < c and a < n/2 we have

Q (Sδ,n,a ∩ Uδ,n,c) ≥ Q (Sδ,n,a)Q
(

Ũδ,n,c

)

− Q

(

bn
∑

i=1

µi,n,ω > n1/s

)

≥ Q (Sδ,n,a)Q
(

EωTνcn ≤ n1/s
)

− bnQ

(

EωTν >
n1/s

bn

)

≥ Q (Sδ,n,a)Q
(

EωTνcn ≤ n1/s
)

− o(n−1/2), (71)

where the last inequality is from Theorem 1.4. Now, define c1 = 1 and for k > 1 let

c′k := max

{

c ∈ N : Q
(

EωTνcdk
≤ d

1/s
k

)

≥ 1

log k

}

∨ 1 .

Note that by Theorem 1.1 we have that c′k → ∞, and so we can define ck = c′k ∧ log log(ak).
Then applying (71) with this choice of ck we have

∞
∑

k=1

Q (Sδk,dk,ak
∩ Uδk,dk,ck

) ≥
∞
∑

k=1

[

Q (Sδk,dk,ak
)Q
(

EωTνckdk
≤ d

1/s
k

)

− o(d
−1/2
k )

]

= ∞,

and the last sum is infinite because d
−1/2
k is summable and for all k large enough we have

Q (Sδk,dk,ak
) Q
(

EωTνckdk
≤ d

1/s
k

)

≥ 1

k log k
.

Corollary 5.5.1. Assume s < 1, and let ck be as in Lemma 5.5. Then, P -a.s. there exists

a random subsequence nkm = nkm(ω) of nk = 22k

such that for the sequences αm, βm, and γm

defined by

αm := nkm−1, βm := nkm−1 + δkmdkm , γm := nkm−1 + ckmdkm , (72)

we have that for all m

max
i∈(αm,βm]

µ2
i,dkm ,ω ≤ 2d

2/s
km

≤ 1

akm

βm
∑

i=αm+1

µ2
i,dkm ,ω, (73)

and
γm
∑

βm+1

µi,dkm ,ω ≤ 2d
1/s
km

.

Proof. Define the events

S′
k :=

{

#
{

i ∈ (nk−1, nk−1 + δkdk] : µ2
i,dk,ω ∈ [d

2/s
k , 2d

2/s
k )

}

= 2ak

}

∩
{

µ2
j,dk,ω < 2d

2/s
k ∀j ∈ (nk−1, nk−1 + δkdk]

}

,

U ′
k :=







nk−1+ckdk
∑

nk−1+δkdk+1

µi,dk,ω ≤ 2d
1/s
k







.

Note that due to the reflections of the random walk, the event S′
k ∩ U ′

k depends on the en-
vironment between ladder locations nk−1 − bdk

and nk−1 + ckdk. Thus, for k0 large enough
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{S′
2k ∩ U ′

2k}∞k=k0
is an independent sequence of events. Similarly, for k large enough S′

k ∩ U ′
k

does not depend on the environment to left of the origin. Thus

P (S′
k ∩ U ′

k) = Q(S′
k ∩ U ′

k) = Q (Sδk,dk,ak
∩ Uδk,dk,ck

)

for all k large enough. Lemma 5.5 then gives that
∑∞

k=1 P (S′
2k ∩ U ′

2k) = ∞, and the Borel-
Cantelli lemma then implies that infinitely many of the events S ′

2k ∩U ′
2k occur P − a.s. Finally,

note that S′
km

implies the event in (73).

Before proving a quenched CLT (along a subsequence) for the hitting times Tn, we need one
more lemma that gives us some control on the quenched tails of crossing times of blocks. We
can get this from an application of Kac’s moment formula. Let T̄y be the hitting time of y when
we add a reflection at the starting point of the random walk. Then Kac’s moment formula [5,

(6)] and the Markov property give that Ex
ω(T̄y)

j ≤ j!
(

Ex
ωT̄y

)j
. Thus,

Eνi−1
ω (T̄ (n)

νi
)j ≤ E

νi−1−bn
ω (T̄νi)

j ≤ j!
(

E
νi−1−bn
ω T̄νi

)j ≤ j!
(

E
νi−1−bn
ω T̄νi−1 + µi,n,ω

)j
. (74)

Lemma 5.6. For any ε < 1
3 , there exists an η > 0 such that

Q
(

∃i ≤ n, j ∈ N : Mi > n(1−ε)/s, Eνi−1
ω (T̄ (n)

νi
)j > j!2jµj

i,n,ω

)

= o(n−η) .

Proof. We use (74) to get

Q
(

∃i ≤ n, j ∈ N : Mi > n(1−ε)/s, Eνi−1
ω (T̄ (n)

νi
)j > j!2jµj

i,n,ω

)

≤ Q
(

∃i ≤ n : Mi > n(1−ε)/s, E
νi−1−bn
ω T̄νi−1 > µi,n,ω

)

≤ nQ
(

M1 > n(1−ε)/s, E
ν−bn
ω T0 > n(1−ε)/s

)

= nQ
(

M1 > n(1−ε)/s
)

Q
(

E
ν−bn
ω T0 > n(1−ε)/s

)

,

where the second inequality is due to a union bound and the fact that µi,n,ω > Mi. Now, by
(13) we have nQ

(

M1 > n(1−ε)/s
)

∼ C5n
ε, and by Theorem 1.4

Q
(

E
ν−bn
ω T0 > n(1−ε)/s

)

≤ bnQ

(

EωTν >
n(1−ε)/s

bn

)

∼ K∞b1+s
n n−1+ε .

Therefore, Q
(

∃i ≤ n, j ∈ N : Mi > n(1−ε)/s, E
νi−1
ω (T̄

(n)
νi )j > j!2jµj

i,n,ω

)

= o(n−1+3ε).

Theorem 5.7. Let Assumptions 1 and 2 hold, and let s < 1. Then P − a.s. there exists a

random subsequence nkm = nkm(ω) of nk = 22k

such that for αm, βm and γm as in (72) and
any sequence xm ∈ [νβm , νγm ], we have

lim
m→∞

Pω

(

Txm − EωTxm√
vm,ω

≤ y

)

= Φ(y) , (75)

where

vm,ω :=

βm
∑

i=αm+1

µ2
i,dkm ,ω.

Proof. Let nkm(ω) be the random subsequence specified in Corollary 5.5.1. For ease of notation,
set ãm = akm and d̃m = dkm . We have

max
i∈(αm,βm]

µ2
i,d̃m,ω

≤ 2d̃2/s
m ≤ 1

ãm

βm
∑

i=αm+1

µ2
i,d̃m,ω

=
vm,ω

ãm
, and

γm
∑

i=βm+1

µi,d̃m,ω ≤ 2d̃1/s
m .
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Now, let {xm}∞m=1 be any sequence of integers (even depending on ω) such that xm ∈ [νβm , νγm ].
Then, since (Txm − EωTxm) = (Tναm

− EωTναm
) + (Txm − Tναm

− E
ναm
ω Txm), it is enough to

prove
Tναm

− EωTναm√
vm,ω

Dω−→ 0, and
Txm − Tναm

− E
ναm
ω Txm√

vm,ω

Dω−→ Z ∼ N(0, 1) (76)

where we use the notation Zn
Dω−→ Z to denote quenched convergence in distribution, that is

limn→∞ Pω(Zn ≤ z) = Pω(Z ≤ z), P − a.s. For the first term in (76) note that for any ε > 0,

we have from Chebychev’s inequality and vm,ω ≥ d̃
2/s
m , that

Pω

(∣

∣

∣

∣

Tναm
− EωTναm√
vm,ω

∣

∣

∣

∣

≥ ε

)

≤ V arωTναm

ε2vm,ω
≤ V arωTναm

ε2d̃
2/s
m

.

Thus, the first claim in (76) will be proved if we can show that V arωTναm
= o(d̃

2/s
m ). For this

we need the following lemma:

Lemma 5.8. Assume s ≤ 2. Then for any δ > 0,

P
(

V arωTνn ≥ n2/s+δ
)

= o(n−δs/4) .

Proof. First, we claim that

EP (V arωT1)
γ < ∞ for any γ <

s

2
. (77)

Indeed, from (44), we have that for any γ < s
2 ≤ 1

EP (V arωT1)
γ ≤ 4γEP (W0 + W 2

0 )γ + 8γ
∑

i<0

EP

(

Πγ
i+1,0(Wi + W 2

i )γ
)

= 4γEP (W0 + W 2
0 )γ + 8γ

∞
∑

i=1

(EP ργ
0)iEP (W0 + W 2

0 )γ ,

where we used that P is i.i.d. in the last equality. Since EP ργ
0 < 1 for any γ ∈ (0, s), we have

that (77) follows as soon as EP (W0 + W 2
0 )γ < ∞. However, since W0 has the same distribution

as R0, we get the latter from (9) when γ < s
2 .

As in Lemma 4.2 let ν̄ = EP ν. Then,

P
(

V arωTνn ≥ n2/s+δ
)

≤ P (V arωT2ν̄n ≥ n2/s+δ) + P (νn ≥ 2ν̄n) .

As in Lemma 4.2, the second term is O
(

e−δ′n
)

for some δ′ > 0. To handle the first term on

the right side, we note that for any γ < s
2 ≤ 1

P (V arωT2ν̄n ≥ n2/s+δ) ≤
EP

(

∑2ν̄n
k=1 V arω(Tk − Tk−1)

)γ

nγ(2/s+δ)
≤ 2ν̄nEP (V arωT1)

γ

nγ(2/s+δ)
. (78)

Then since EP (V arωT1)
γ < ∞ for any γ < s

2 , we can choose γ arbitrarily close to s
2 so that the

last term on the right of (78) is o(n−δs/4).

As a result of Lemma 5.8 and the Borel-Cantelli lemma, we have that V arωTνnk
= o(n

2/s+δ
k )

for any δ > 0. Therefore, for any δ ∈ (0, 2
s ) we have V arωTναm

= o(α
2/s+δ
m ) = o(n

2/s+δ
km−1 ) =

o(d̃
2/s
m ) (in the last equality we use that dk ∼ nk to grow much faster than exponentially in k).
For the next step in the proof, we show that reflections can be added without changing

the limiting distribution. Specifically, we show that it is enough to prove the following lemma,
whose proof we postpone:
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Lemma 5.9. With notation as in Theorem 5.7, we have

lim
m→∞

P
ναm
ω

(

T̄
(d̃m)
xm − EωT̄

(d̃m)
xm√

vm,ω
≤ y

)

= Φ(y) . (79)

Assuming Lemma 5.9, we complete the proof of Theorem 5.7. It is enough to show that

lim
m→∞

P
ναm
ω (T̄ (d̃m)

xkm
6= Txm) = 0, and lim

m→∞
E

ναm
ω (Txm − T̄ (d̃m)

xkm
) = 0.

However, since P
ναm
ω (T̄

(d̃m)
xm 6= Txm) = P

ναm
ω

(

Txm − T̄
(d̃m)
xm ≥ 1

)

≤ E
ναm
ω (Txm − T̄

(d̃m)
xm ), and

xm ≤ γm = nkm−1 + ckm d̃m ≤ nkm+1 for all m large enough, it is enough to prove

lim
k→∞

E
νnk−1
ω

(

Tνnk+1
− T̄ (dk)

νnk+1

)

= 0, P − a.s. (80)

Now, from Lemma 3.2 we have that for any ε > 0

Q
(

E
νnk−1
ω

(

Tνnk+1
− T̄ (dk)

νnk+1

)

> ε
)

≤ nk+1Q

(

EωTν − EωT̄ (dk)
ν >

ε

nk+1

)

= nk+1O
(

ns
k+1e

−δ′bdk

)

.

Since nk ∼ dk, the last term on the right is summable. Therefore, by the Borel-Cantelli lemma,

lim
k→∞

E
νnk−1
ω

(

Tνnk+1
− T̄ (dk)

νnk+1

)

= 0, Q − a.s. (81)

This is almost the same as (80), but with Q instead of P . To use this to prove (80) note that
for i > bn using (19) we can write

Eνi−1
w Tνi − Eνi−1

w T̄ (n)
νi

= Ai,n(ω) + Bi,n(ω)W−1 ,

where Ai,n(ω) and Bi,n(ω) are random variables depending only on the environment to the right

of 0. Thus, E
νnk−1
ω

(

Tνnk+1
− T̄

(dk)
νnk+1

)

= Adk
(ω) + Bdk

(ω)W−1 where Adk
(ω) and Bdk

(ω) only

depend on the environment to the right of zero (so Adk
and Bdk

have the same distribution under
P as under Q). Therefore (80) follows from (81), which finishes the proof of the theorem.

Proof of Lemma 5.9. Clearly, it suffices to show the following claims:

T̄
(d̃m)
xm − T̄

(d̃m)
νβm

− E
νβm
ω T̄

(d̃m)
xm√

vm,ω

Dω−→ 0, (82)

and

T̄
(d̃m)
νβm

− T̄
(d̃m)
ναm

− E
ναm
ω T̄

(d̃m)
νβm√

vm,ω

Dω−→ Z ∼ N(0, 1) . (83)

To prove (82), we note that

Pω

(∣

∣

∣

∣

∣

T̄
(d̃m)
xm − T̄

(d̃m)
νβm

− E
νβm
ω T̄

(d̃m)
xm√

vm,ω

∣

∣

∣

∣

∣

≥ ε

)

≤ V arω(T̄
(d̃m)
xm − T̄

(d̃m)
νβm

)

ε2vm,ω
≤
∑γm

i=βm+1 σ2
i,d̃m,ω

ε2ãmd̃
2/s
m

,

where the last inequality is because xm ≤ γm and vm,ω ≥ ãmd̃
2/s
m . However, by Corollary 5.4.1

and the Borel-Cantelli lemma,

γm
∑

i=βm+1

σ2
i,d̃m,ω

=

γm
∑

i=βm+1

µ2
i,d̃m,ω

+ o
(

(ckm d̃m)2/s
)

.
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The application of Corollary 5.4.1 uses the fact that for k large enough the reflections ensure
that the events in question do not involve the environment to the left of zero and thus have the
same probability under P or Q. (This type of argument will be used a few more times in the
remainder of the proof without mention.) By our choice of the subsequence nkm we have

γm
∑

i=βm+1

µ2
i,d̃m,ω

≤





γm
∑

i=βm+1

µi,d̃m,ω





2

≤ 4d̃2/s
m .

Therefore,

lim
m→∞

Pω

(∣

∣

∣

∣

∣

T̄
(d̃m)
xm − T̄

(d̃m)
νβm

− E
νβm
ω T̄

(d̃m)
xm√

vm,ω

∣

∣

∣

∣

∣

≥ ε

)

≤ lim
m→∞

4d̃
2/s
m + o

(

(ckm d̃m)2/s
)

ε2ãmd̃
2/s
m

= 0, P − a.s.

where the last limit equals zero because ck = o(log ak).
It only remains to prove (83). Since re-writing we express

T̄ (d̃m)
νβm

− T̄ (d̃m)
ναm

− E
ναm
ω T̄ (d̃m)

νβm
=

βm
∑

i=αm+1

(

(T̄ (d̃m)
νi

− T̄ (d̃m)
νi−1

) − µi,d̃m,ω

)

as the sum of independent, zero-mean random variables (quenched), we need only show the
Lindberg-Feller condition. That is, we need to show

lim
m→∞

1

vm,ω

βm
∑

i=αm+1

σ2
i,d̃m,ω

= 1, P − a.s. (84)

and for all ε > 0

lim
m→∞

1

vm,ω

βm
∑

i=αm+1

Eνi−1
ω

[

(

T̄ (d̃m)
νi

− µi,d̃m,ω

)2

1|T̄ (d̃m)
νi

−µi,d̃m,ω |>ε
√

vm,ω)

]

= 0, P − a.s. (85)

To prove (84) note that

1

vm,ω

βm
∑

i=αm+1

σ2
i,d̃m,ω

= 1 +

∑βm

i=αm+1

(

σ2
i,d̃m,ω

− µ2
i,d̃m,ω

)

vm,ω

However, again by Lemma 5.4.1 and the Borel-Cantelli lemma we have
∑βm

i=αm+1(σ
2
i,d̃m,ω

−
µ2

i,d̃m,ω
) = o

(

(δkm d̃m)2/s
)

. Recalling that vm,ω ≥ ãmd̃
2/s
m we have that (84) is proved.

To prove (85) we break the sum up into two parts depending on whether Mi is “small” or
“large”. Specifically, for ε′ ∈ (0, 1

3 ) we decompose the sum as

1

vm,ω

βm
∑

i=αm+1

Eνi−1
ω

[

(

T̄ (d̃m)
νi

− µi,d̃m,ω

)2

1|T̄ (d̃m)
νi

−µi,d̃m,ω |>ε
√

vm,ω)

]

1
Mi≤d̃

(1−ε′)/s
m

(86)

+
1

vm,ω

βm
∑

i=αm+1

Eνi−1
ω

[

(

T̄ (d̃m)
νi

− µi,d̃m,ω

)2

1|T̄ (d̃m)
νi

−µi,d̃m,ω|>ε
√

vm,ω

]

1
Mi>d̃

(1−ε′)/s
m

. (87)

We get an upper bound for (86) by first omitting the indicator function inside the expectation,
and then expanding the sum to be up to nkm ≥ βm. Thus (86) is bounded above by

1

vm,ω

βm
∑

i=αm+1

σ2
i,d̃m,ω

1
Mi≤d̃

(1−ε′)/s
m

≤ 1

vm,ω

nkm
∑

i=nkm−1+1

σ2
i,d̃m,ω

1
Mi≤d̃

(1−ε′)/s
m

.
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However, since dk grows exponentially fast, the Borel-Cantelli lemma and Lemma 5.4 give that

nk
∑

i=nk−1+1

σ2
i,dk,ω1

Mi≤d
(1−ε′)/s
k

= o(d
2/s
k ). (88)

Therefore, since our choice of the subsequence nkm gives that vm,ω ≥ d̃
2/s
m , we have that (86)

tends to zero as m → ∞.
To get an upper bound for (87), first note that our choice of the subsequence nkm gives

that ε
√

vm,ω ≥ ε
√

ãmµi,d̃m,ω for any i ∈ (αm, βm]. Thus, for m large enough we can replace

the indicators inside the expectations in (87) by the indicators of the events {T̄ (d̃m)
νi > (1 +

ε
√

ãm)µi,d̃m,ω}. Thus, for m large enough and i ∈ (αm, βm], we have

Eνi−1
ω

[

(

T̄ (d̃m)
νi

− µi,d̃m,ω

)2

1|T̄ (d̃m)
νi

−µi,d̃m,ω |>ε
√

vm,ω

]

≤ Eνi−1
ω

[

(

T̄ (d̃m)
νi

− µi,d̃m,ω

)2

1
T̄

(d̃m)
νi

>(1+ε
√

ãm)µi,d̃m,ω

]

=

∫ ∞

1+ε
√

ãm

P νi−1
ω

(

T̄ (d̃m)
νi

> xµi,d̃m,ω

)

2(x − 1)µ2
i,d̃m,ω

dx .

We want to use Lemma 5.6 get an upper bound on the probability inside the integral on
the last line above. Lemma 5.6 and the Borel-Cantelli lemma give that for k large enough,

E
νi−1
ω

(

T̄
(dk)
νi

)j

≤ 2jj!µj
i,dk,ω, for all nk−1 < i ≤ nk such that Mi > d

(1−ε′)/s
k . Multiplying by

(4µi,dk,ω)−j and summing over j gives that E
νi−1
ω eT̄

(dk)
νi

/(4µi,dk,ω) ≤ 2. Therefore, Chebychev’s
inequality gives

P νi−1
ω

(

T̄ (dk)
νi

> xµi,dk,ω

)

≤ e−x/4Eνi−1
ω eT̄

(dk)
νi

/(4µi,dk,ω) ≤ 2e−x/4 .

Thus, for all m large enough we have for all αm < i ≤ βm ≤ nkm with Mi > d̃
(1−ε′)/s
m that

∫ ∞

1+ε
√

ãm

P νi−1
ω

(

T̄ (d̃m)
νi

> xµi,d̃m,ω

)

2(x − 1)µ2
i,d̃m,ω

dx ≤
∫ ∞

1+ε
√

ãm

2e−x/42(x − 1)µ2
i,d̃m,ω

dx

= 16(4 + ε
√

ãm)e−(1+ε
√

ãm)/4µ2
i,d̃m,ω

.

Recalling the definition of vm,ω =
∑βm

i=αm+1 µ2
i,d̃m,ω

, we have that as m → ∞, (87) is bounded

above by

lim
m→∞

1

vm,ω

βm
∑

i=αm+1

16(4 + ε
√

ãm)e−(1+ε
√

ãm)/4µ2
i,d̃m,ω

1
Mi>d̃

(1−ε′)/s
m

≤ lim
m→∞

16(4 + ε
√

ãm)e−(1+ε
√

ãm)/4 = 0 .

This finishes the proof of (85) and thus of Lemma 5.9.

Proof of Theorem 1.3:

Note first that from Lemma 4.2 and the Borel-Cantelli lemma, we have that for any ε > 0,

EωTνnk
= o(n

(1+ε)/s
k ), P − a.s. This is equivalent to

lim sup
k→∞

log EωTνnk

log nk
≤ 1

s
, P − a.s. (89)

We can also get bounds on the probability of EωTνn being small. Since E
νi−1
ω Tνi ≥ Mi we have

P
(

EωTνn ≤ n(1−ε)/s
)

≤ P
(

Mi ≤ n(1−ε)/s, ∀i ≤ n
)

≤
(

1 − P
(

M1 > n(1−ε)/s
))n

,
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and since P (M1 > n(1−ε)/s) ∼ C5n
1−ε, see (9), we have P

(

EωTνn ≤ n(1−ε)/s
)

≤ e−nε/2

. Thus,

by the Borel-Cantelli lemma, for any ε > 0 we have that EωTνnk
≥ n

(1−ε)/s
k for all k large

enough, P − a.s., or equivalently

lim inf
k→∞

log EωTνnk

log nk
≥ 1

s
, P − a.s. (90)

Let nkm be the subsequence specified in Theorem 5.7, and define tm := EωTnkm
. Then, by (89)

and (90), limm→∞
log tm

log nkm
= 1/s.

For any t define X∗
t := max{Xn : n ≤ t}. Then, for any x ∈ (0,∞) we have

Pω

(

X∗
tm

nkm

< x

)

= P
(

X∗
tm

< xnkm

)

= Pω

(

Txnkm
> tm

)

= Pω

(

Txnkm
− EωTxnkm√
vm,ω

>
EωTnkm

− EωTxnkm√
vm,ω

)

.

Now, with notation as in Theorem 5.7, we have that for all m large enough νβm < xnkm < νγm

(note that this also uses the fact that νn/n → EP ν, P − a.s.). Thus
Txnkm

−EωTxnkm√
vm,ω

Dω−→ Z ∼
N(0, 1). Then, we will have proved that limm→∞ Pω

(

X∗

tm

nkm
< x

)

= 1
2 for any x ∈ (0,∞) if we

can show

lim
m→∞

EωTnkm
− EωTxnkm√
vm,ω

= 0 , P − a.s. (91)

For m large enough we have nkm , xnkm ∈ (νβm , νγm). Thus, for m large enough,

∣

∣

∣

∣

EωTxnkm
− EωTnkm√

vm,ω

∣

∣

∣

∣

≤ E
νβm
ω Tνγm√

vm,ω
=

1
√

vm,ω



E
νβm
ω

(

Tνγm
− T̄ (d̃m)

νγm

)

+

γm
∑

i=βm+1

µi,d̃m,ω



 .

Since αm ≤ βm ≤ γm ≤ nkm+1 for all m large enough, we can apply (80) to get

lim
m→∞

E
νβm
ω

(

Tνγm
− T̄ (d̃m)

νγm

)

≤ lim
m→∞

E
ναm
ω

(

Tνnkm+1
− T̄ (d̃m)

νnkm+1

)

= 0.

Also, from our choice of nkm we have that
∑γm

i=βm+1 µi,d̃m,ω ≤ 2d̃
1/s
m and vm,ω ≥ ãmd̃

2/s
m . Thus

(91) is proved. Therefore

lim
m→∞

Pω

(

X∗
tm

nkm

≤ x

)

=
1

2
, ∀x ∈ (0,∞),

and obviously limm→∞ Pω

(

X∗

tm

nkm
< 0
)

= 0 since Xn is transient to the right P − a.s. due to

Assumption 1. Finally, note that

X∗
t − Xt

log2 t
=

X∗
t − νNt

log2 t
+

νNt − Xt

log2 t
≤ maxi≤t(νi − νi−1)

log2 t
+

νNt − Xt

log2 t
.

However, Lemma 4.4 and an easy application of Lemma 2.1 and the Borel-Cantelli lemma gives
that

lim
t→∞

X∗
t − Xt

log2 t
= 0, P − a.s.

This finishes the proof of the theorem.
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6 Asymptotics of the tail of EωTν

Recall that EωTν = ν + 2
∑ν−1

j=0 Wj = ν + 2
∑

i≤j,0≤j<ν Πi,j , and for any A > 1 define

σ = σA = inf{n ≥ 1 : Π0,n−1 ≥ A} .

Note that σ − 1 is a stopping time for the sequence Π0,k. For any A > 1, {σ > ν} = {M1 < A}.
Thus we have by (15) that for any A > 1,

Q(EωTν > x, σ > ν) = Q(EωTν > x, M1 < A) = o(x−s). (92)

Thus, we may focus on the tail estimates Q(EωTν > x, σ < ν) in which case we can use the
following expansion of EωTν :

EωTν = ν + 2
∑

i<0≤j<σ−1

Πi,j + 2
∑

0≤i≤j<σ−1

Πi,j + 2
∑

σ≤i≤j<ν

Πi,j + 2
∑

i≤σ−1≤j<ν

Πi,j

= ν + 2W−1R0,σ−2 + 2
σ−2
∑

j=0

W0,j + 2
ν−1
∑

i=σ

Ri,ν−1 + 2Wσ−1(1 + Rσ,ν−1) . (93)

We will show that the dominant term in (93) is the last term: 2Wσ−1(1 + Rσ,ν−1). A few easy
consequences of Lemmas 2.1 and 2.2 are that the tails of the first three terms in the expansion
(93) are negligible. The following statements are true for any δ > 0 and any A > 1:

Q(ν > δx) = P (ν > δx) = o(x−s) , (94)

Q(2W−1R0,σ−2 > δx, σ < ν) ≤ Q(W−1 >
√

δx) + P (2R0,σ−2 >
√

δx, σ < ν)

≤ Q(W−1 >
√

δx) + P (2νA >
√

δx) = o(x−s), (95)

Q



2

σ−2
∑

j=0

W0,j > δx, σ < ν



 ≤ P



2

σ−1
∑

j=1

jA > δx, σ < ν



 ≤ P (ν2A > δx) = o(x−s). (96)

The fourth term in (93) is not negligible, but we can make it arbitrarily small by taking A large
enough.

Lemma 6.1. For all δ > 0, there exists an A0 = A0(δ) < ∞ such that

P



2
∑

σA≤i<ν

Ri,ν−1 > δx



 < δx−s, ∀A ≥ A0(δ) .

Proof. This proof is essentially a copy of the proof of Lemma 3 in [10].

P



2
∑

σA≤i<ν

Ri,ν−1 > δx



 ≤ P





∑

σA≤i<ν

Ri >
δ

2
x



 = P

( ∞
∑

i=1

1σA≤i<νRi >
δ

2
x

6

π2

∞
∑

i=1

i−2

)

≤
∞
∑

i=1

P

(

1σA≤i<νRi > x
3δ

π2
i−2

)

.

However, since the event {σA ≤ i < ν} depends only on ρj for j < i, and Ri depends only on
ρj for j ≥ i, we have that

P



2
∑

σA≤i<ν

Ri,ν−1 > δx



 ≤
∞
∑

i=1

P (σA ≤ i < ν)P

(

Ri > x
3δ

π2
i−2

)

.
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Now, from (11) we have that there exists a K1 > 0 such that P (R0 > x) ≤ K1x
−s for all x > 0.

We then conclude that

P





∑

σA≤i<ν

Ri,ν−1 > δx



 ≤ K1

(

3δ

π2

)−s

x−s
∞
∑

i=1

P (σA ≤ i < ν) i2s

= K1

(

3δ

π2

)−s

x−sEP

[ ∞
∑

i=1

1σA≤i<νi2s

]

≤ K1

(

3δ

π2

)−s

x−sEP [ν2s+11σA<ν ] . (97)

Since EP ν2s+1 < ∞ and limA→∞ P (σA < ν) = 0, we have that the right side of (97) can be
made less than δx−s by choosing A large enough.

We need one more lemma before analyzing the dominant term in (93).

Lemma 6.2. EQ

[

W t
σ−11σ<ν

]

< ∞ for all A > 1 and all t > 0.

Proof. Since Wσ−1 = W0,σ−1 + Π0,σ−1W−1, we need only to show that EQ[W t
0,σ−11σ<ν ] < ∞

and EQ[Πt
0,σ−1W

t
−11σ<ν ] < ∞.

By Assumption 2 we have Π0,σ−1 < ρmaxA, and Lemma 2.1 gives EP νt < ∞. Thus,

EQ[W t
0,σ−11σ<ν ] ≤ EP [σtΠt

0,σ−11σ<ν ] ≤ ρt
maxA

tEP [νt] < ∞.

Similarly, since Lemma 2.2 gives EQW t
−1 < ∞ we have

EQ[Πt
0,σ−1W

t
−11σ<ν ] ≤ ρt

maxA
tEQ[W t

−1] < ∞ .

Finally, we turn to the asymptotics of the tail of 2Wσ−1(1 + Rσ,ν−1), which is the dominant
term in (93).

Lemma 6.3. For any A > 1, there exists a constant KA ∈ (0,∞) such that

lim
x→∞

xsQ (Wσ−1(1 + Rσ,ν−1) > x) = KA ,

where we use the convention that Wσ−1 = Rσ,ν−1 = 0 when σ > ν.

Proof. The strategy of the proof is as follows. First, note that on the event {σ < ν} we have
Wσ−1(1+Rσ) = Wσ−1(1+Rσ,ν−1)+Wσ−1Πσ,ν−1Rν . We will begin by analyzing the asymptotics
of the tails of Wσ−1(1 + Rσ) and Wσ−1Πσ,ν−1Rν . Next we will show that Wσ−1(1 + Rσ,ν−1)
and Wσ−1Πσ,ν−1Rν are essentially independent in the sense that they cannot both be large.
This will allow us to use the asymptotics of the tails of Wσ−1(1 + Rσ) and Wσ−1Πσ,ν−1Rν to
compute the asymptotics of the tails of Wσ−1(1 + Rσ,ν−1).
To analyze the asymptotics of the tail of Wσ−1(1 + Rσ), we first recall from (11) that there
exists a K > 0 such that P (R0 > x) ∼ Kx−s. Let Fσ−1 = σ(. . . , ωσ−2, ωσ−1) be the σ−algebra
generated by the environment to the left of σ. Then on the event {σ < ∞}, Rσ has the same
distribution as R0 and is independent of Fσ−1. Thus,

lim
x→∞

xsQ(Wσ−1(1 + Rσ) > x, σ < ν) = lim
x→∞

E

[

xsQ

(

1 + Rσ >
x

Wσ−1
, σ < ν

∣

∣

∣

∣

Fσ−1

)]

= KW s
σ−11σ<ν . (98)
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A similar calculation yields

lim
x→∞

xsQ (Wσ−1Πσ,ν−1Rν > x, σ < ν) = lim
x→∞

EQ

[

xsQ

(

Rν >
x

Wσ−1Πσ,ν−1
, σ < ν

∣

∣

∣

∣

Fν−1

)]

= EQ

[

W s
σ−1Π

s
σ,ν−11σ<ν

]

K. (99)

Next, since Πσ,ν−1 < 1
A on the event {σ < ν} we have for any ε > 0 that

Q (Wσ−1(1 + Rσ,ν−1) > εx, Wσ−1Πσ,ν−1Rν > εx, σ < ν)

≤ Q (Wσ−1(1 + Rσ,ν−1) > εx, Wσ−1Rν > Aεx, σ < ν)

= EQ

[

Q

(

1 + Rσ,ν−1 >
εx

Wσ−1
, σ < ν|Fσ−1

)

Q

(

Rν > A
εx

Wσ−1
, σ < ν|Fσ−1

)]

≤ EQ

[

Q

(

1 + Rσ >
εx

Wσ−1
, σ < ν|Fσ−1

)

Q

(

Rν > A
εx

Wσ−1
|Fσ−1

)]

, (100)

where the inequality inequality on the third line is because Rσ,ν−1 and Rν are independent
when σ < ν (note that {σ < ν} ∈ Fσ−1), and the last inequality is because Rσ,ν−1 ≤ Rσ. Now,
conditioned on Fσ−1, Rσ and Rν have the same distribution as R0. Then, since by (11) there
exists a K̃1 > 0 such that P (1 + R0 > x) ≤ K̃1x

−s, we have that (100) is bounded above by

EQ

[

W 2s
σ−11σ<ν

]

K̃2
1Asε−2sx−2s .

Since EQ

[

W 2s
σ−11σ<ν

]

< ∞ by Lemma 6.2, we have that

lim
x→∞

xsQ(Wσ−1(1 + Rσ,ν−1) > εx, Wσ−1Πσ,ν−1Rν > εx, σ < ν) = 0 . (101)

Therefore, since Rσ = Rσ,ν−1 + Πσ,ν−1Rν , we have that for any ε > 0

Q(Wσ−1(1 + Rσ) > (1 + ε)x, σ < ν) ≤ Q(Wσ−1(1 + Rσ,ν−1) > εx, Wσ−1Πσ,ν−1Rν > εx, σ < ν)

+ Q(Wσ−1(1 + Rσ,ν−1) > x, σ < ν)

+ Q(Wσ−1Πσ,ν−1Rν > x, σ < ν) .

Applying (98), (99) and (101) we get that for any ε > 0

lim inf
x→∞

xsQ(Wσ−1(1+Rσ,ν−1) > x, σ < ν) ≥ KEQ[W s
σ−11σ<ν ](1+ε)−s−KEQ[W s

σ−1Π
s
σ,ν−11σ<ν ] .

(102)
Similarly, for a bound in the other direction we have

Q(Wσ−1(1 + Rσ) > x, σ < ν) ≥ Q(Wσ−1(1 + Rσ,ν−1) > x, or Wσ−1Πσ,ν−1Rν > x, σ < ν)

= Q(Wσ−1(1 + Rσ,ν−1) > x, σ < ν)

+ Q(Wσ−1Πσ,ν−1Rν > x, σ < ν)

− Q(Wσ−1(1 + Rσ,ν−1) > x, Wσ−1Πσ,ν−1Rν > x, σ < ν) .

Thus, again applying (98),(99) and (101) we get

lim sup
x→∞

xsQ(Wσ−1(1 + Rσ,ν−1) > x, σ < ν) ≤ KEQ[W s
σ−11σ<ν ] − KEQ[W s

σ−1Π
s
σ,ν−11σ<ν ] .

(103)
Finally, applying (102) and (103) and letting ε → 0, we get that

lim
x→∞

xsQ(Wσ−1(1 + Rσ,ν−1) > x, σ < ν) = KEQ[W s
σ−1(1 − Πs

σ,ν−1)1σ<ν ] =: KA,

and KA ∈ (0,∞) by Lemma 6.2, and the fact that 1 − Πσ,ν−1 ∈ (1 − 1
A , 1).

Finally, we are ready to analyze the tail of EωTν under the measure Q.
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Proof of Theorem 1.4:
Let δ > 0, and choose A ≥ A0(δ) as in Lemma 6.1. Then using (93) we have

Q(EωTν > x) = Q(EωTν > x, σ > ν) + Q(EωTν > x, σ < ν)

≤ Q(EωTν > x, σ > ν) + Q(ν > δt) + Q(2W−1R0,σ−2 > δt, σ < ν)

+ Q



2

σ−2
∑

j=0

W0,j > δt, σ < ν



+ Q



2
∑

σ≤i<ν

Ri,ν−1 > δt





+ Q(2Wσ−1(1 + Rσ,ν−1) > (1 − 4δ)x, σ < ν) .

Thus combining equations (92), (94), (95), and (96), and Lemmas 6.1 and 6.3, we get that

lim sup
x→∞

xsQ(EωTν > x) ≤ δ + 2sKA(1 − 4δ)−s. (104)

The lower bound is easier, since Q(EωTν > x) ≥ Q(2Wσ−1(1 + Rσ,ν−1) > x, σ < ν). Thus

lim inf
x→∞

xsQ(EωTν > x) ≥ 2sKA . (105)

From (104) and (105) we get that K := lim supA→∞ 2sKA < ∞. Therefore, letting K :=
lim infA→∞ 2sKA we have from (104) and (105) that

K ≤ lim inf
x→∞

xsQ(EωTν > x) ≤ lim sup
x→∞

xsQ(EωTν > x) ≤ δ + K(1 − 4δ)−s

Then, letting δ → 0 completes the proof of the theorem with K∞ = K = K.
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