Show γ is well defined.

Suppose C_1 starts at 0 and travels up to (x, y_0).

Suppose C_2 is another curve that starts at 0 and travels up to (x_0, y_0).

For γ to be well defined we must show
\[\oint_{C_2} F(r) \cdot dr = \oint_{C_1} F(r) \cdot dr \]

But the curve C defined by traveling along C_1 to (x_0, y_0) and then backwards along C_2 to 0 is a closed curve.

Thus $C = C_1 - C_2$ is closed and since
\[\oint_{C} F(r) \cdot dr = 0 \Rightarrow \oint_{C_1 - C_2} F(r) \cdot dr = 0 \]

Thus γ is well defined.