Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional local regular rings

Yevesy Nisnevich

Abstract — Let X be a regular scheme, G a reductive group scheme over X. Serre and Grothendieck conjectured that any rationally trivial G-torsor is locally trivial in the Zariski topology of X. We prove this conjecture when dim $X=2$ and G is quasi-split over X.

Espaces homogènes principaux rationnellement triviaux, pureté et arithmétique des schémas en groupes réductifs sur les extensions d’anneaux locaux réguliers de dimension 2

Résumé — Soit X un schéma régulier, et soit G un schéma en groupes réductif sur X. Serre et Grothendieck ont conjecturé que tout G-torsor rationnellement trivial est localement trivial pour la topologie de Zariski de X. Nous démontrons cette conjecture dans le cas où X est de dimension 2 et G quasi-déployé.

Version française abrégée — Cette Note fait suite à [9], dont on garde la terminologie et les notations. Soient X un schéma noethérien intègre et régulier, $K=R(X)$ le corps des fonctions rationnelles sur X et G un schéma en groupes réductif sur X. On a la suite de cohomologie de G:

$$1 \rightarrow H^1(X_{\text{zar}}, G) \rightarrow H^1(X_{\text{et}}, G) \rightarrow H^1(K, G).$$

Conjecture 1.2 (Serre [12], Grothendieck [12], [5]). — La suite (1.1) est exacte.

Lorsque X est de dimension 1, ou local hensélien, et G est un X-groupe semi-simple arbitraire, cette conjecture a été prouvée dans [9]. Dans cette Note on montre que, lorsque dim $X=2$ et G est un X-groupe réductif isotrope, la conjecture 1.2 se déduit des conjectures de pureté 1.3 et 1.4 énoncées plus bas. On prouve aussi les conjectures 1.3 et 1.2 lorsque G est quasi déployé et X de dimension 2.

Par la suite on note R un anneau local régulier noethérien, de dimension $d \geq 1$, m son idéal maximal et K son corps de fractions. On choisit un élément $u \in m - m^2$. On écrit $Q=R[u^{-1}]$, $X=\text{Spec } R$, $Y=\text{Spec } Q$. Soient G un R-groupe réductif et G_{ad} le R-groupe dérivé de G (la partie semi-simple de G). Lorsque R-rang $(G_{\text{ad}}) \geq 1$, soient $\mathcal{P}(R)$ l’ensemble des sous-groupes paraboliques minimaux de G sur R, $R_u(P)$ le radical unipotent de $P \in \mathcal{P}(R)$ et $G^a(Q)$ le sous-groupe de $G(Q)$ engendré par les sous-groupes $R_u(P)(Q)$, pour $P \in \mathcal{P}(R)$.

Conjecture 1.3 (Pureté). — $H^1(Q_{\text{zar}}, G)=0$.

Conjecture 1.4 (K_1-pureté). — Soit R-rang $(G_{\text{ad}}) \geq 1$ et soit P un sous-groupe parabolique minimal de G sur R. Alors $G(Q)=G^a(Q)P(Q)$.

La conjecture 1.3 généralise une conjecture (2) formulée par Quillen pour $G=\text{GL}_n$ dans [11] et prouvée par Gabber pour $G=\text{GL}_n$ et PGL_n en dimension ≤ 3, cf. [13].

Note présentée par Jean-Pierre Serre.
1. INTRODUCTION. — This Note is a continuation of [9] and we shall keep here the terminology and the notations of [9].

Let X be an integral regular noetherian scheme, $K=R(X)$ the field of rational functions on X, and G a reductive group scheme over X. Consider the following sequence of the cohomology of G:

$$(1.1) \quad 1 \to H^1(X_{zar}, G) \to H^1(X_{et}, G) \to H^1(K, G).$$

Conjecture 1.2 (Serre [12], Grothendieck [12], [5]). — Sequence (1.1) is exact.

In the cases when X is one-dimensional or a local henselian, and G is an arbitrary semisimple X-group, the Conjecture has been proved in [9]. In this Note we show that when $\dim X=2$ and G is a reductive isotropic X-group Conjecture 1.2 follows from purity Conjectures 1.3 and 1.4 formulated below.

Everywhere below R will be a local regular noetherian ring of dimension $d \geq 1$, m the maximal ideal of R and K the quotient field of R. Choose an element $u \in m - m^2$ and denote $Q=R[u^{-1}]$, $X=\text{Spec } R$, G_u the derived R-group of G (the semisimple part of G). If R-rank $(G_u) \geq 1$, let $\mathcal{P}(R)$ be the set of all minimal parabolic R-subgroups of G over R, $R_u(P)$ the unipotent radical of $P \in \mathcal{P}(R)$, and $G^*(Q)$ the subgroup of $G(Q)$ generated by all subgroups $R_u(P)(Q)$, for $P \in \mathcal{P}(R)$.

Conjecture 1.3 (Purity). — $H^1(Q_{zar}, G)=0$.

Conjecture 1.4 (K_1-purity). — If R-rank $(G_u) \geq 1$ and P a minimal parabolic subgroup of G over R, then $G(Q)=G^*(Q)P(Q)$.

Conjecture 1.3 generalizes Conjecture (2) formulated by Quillen for $G=GL_n$ in [11] and proved by Gabber for $G=GL_n$ and PGL_n and X of dimension ≤ 3, cf. [13].

We prove here Conjectures 1.2 and 1.3 and a weak version of Conjecture 1.4, sufficient for our purpose, in the case when $\dim X=2$ and G is quasi-split over X. Moreover, we establish in this case several decompositions of the groups $G(Q)$, $G(K)$ and related groups, in particular, versions of the Iwasawa and the Bruhat-Steinberg decompositions for $G(K)$ and $G(Q)$ respectively.

2. LOCALIZATION MAPS AND "LOCAL CLASS SETS". — Let $b=uR$ be the ideal generated by u in R. Denote by \hat{R} (resp. R°) the completion (resp. henselization) of R with respect to b. Put $\hat{Q}=\hat{R}[u^{-1}]$, $Q^\circ=R[u^{-1}]$, $X^\circ=\text{Spec } R^\circ$ and $Y^\circ=\text{Spec } Q^\circ$. Consider the "local class set" $c(G)=G(Q)/G(\hat{Q})G(\hat{R})$ and "henselian local class set" $c^\circ(G)=G(Q)/G(Q^\circ)G(R^\circ)$ which have distinguished points corresponding to the classes $G(Q)G(\hat{R})$ and $G(Q)G(R^\circ)$ respectively.

Proposition 2.1. — There exists an exact sequence of pointed sets:

$$(2.1.1) \quad 1 \to c(G) \to H^1(R_{zar}, G) \to H^1(Q_{zar}, G) \times H^1(\hat{R}_{zar}, G).$$

Proof. — First, we establish the henselian analogue $(2.1.1)^h$ of $(2.1.1)$ in which $c(G)$ is replaced by $c^h(G)$ and $G(\hat{R})$ by $G(R^\circ)$. $(2.1.1)^h$ is proved by comparing the local cohomology exact sequences for the pairs (X, Y) and (X°, Y°) and using the excision for $H^1(\hat{Q}, Z)$ where $Z=\text{Spec } R/b$. Then we show using the Artin approximation that $(2.1.1)^h$ implies $(2.1.1)$.

Let $m(G): H^1(R_{zar}, G) \to H^1(Q_{zar}, G)$ and $m(G \otimes_R \hat{R}): H^1(\hat{R}_{zar}, G) \to H^1(\hat{Q}_{zar}, G)$ be the canonical maps.

Corollary 2.2. — Assume that $\text{Ker } m(G \otimes_R \hat{R})=0$.

Then the following properties (1), (2) are equivalent:
(1) \(c(G) = 0\);
(2) \(\text{Ker } m(G) = 0\).

Proposition 2.3. Let \(M\) be an \(R\)-group of the multiplicative type. Then
(1) the localization maps \(l(M)\) and \(l(M \otimes_R Q)\) are injective;
(2) \(c(M) = 0\), i.e. \(M(Q) = M(Q)M(\hat{R})\), and \(H^1(Q_{zar}, M) = 0\).

The injectivity of \(l(M)\) is known [3], [8], and its proof can be extended to \(l(M \otimes_R Q)\) (see [1] in the case when \(M = G_n\)). The vanishing of \(c(M)\) [resp. \(H^1(Q_{zar}, M)\)] follows from (1) and 2.2 (resp. from Conjecture 1.2 for \(X = \text{Spec } Q\) proved in [9], and (1)).

3. An approximation property of \(G(Q)\). Beginning from this section and up to the end of this Note we shall assume that the residue field \(k = R/m\) of \(R\) is infinite.

Equip \(\hat{Q}\) with the \(\hat{b}\)-adic topology as an \(\hat{R}\)-module, where \(\hat{b} = u \hat{R}\). This uniquely determines the structure of a topological group on \(G(\hat{Q})\). For a subgroup \(H \subset G(\hat{Q})\) denote by \(\hat{H}\) its closure in \(G(\hat{Q})\).

Proposition 3.1. \(G(Q)\) contains a subgroup \(N\) which is open in \(G(\hat{Q})\) and is normalized by \(G(\hat{R})\).

In the case where \(\dim R = 1\) and, hence, \(Q = K\) is a field, an analogue of Proposition 3.1 for the pair \((G(K), G(K))\) has been proved by Harder [6]. Our proof of 3.1 is based on similar ideas and uses heavily the results of [4] on the local structure of the \(R\)-scheme \(\mathcal{F}\) of maximal tori of \(G\) over local rings.

4. Some decompositions of \(G(\hat{Q})\).

Lemma 4.1. Let \(T\) be an \(\hat{R}\)-torus, \(P\) a parabolic subgroup of \(G\) over \(\hat{R}\), and \(U = R_u(P)\). Then \(U(Q) = G(Q), G^*(\hat{Q}) \subset G(\hat{Q})\) and \(T(Q) \subset G(Q)\).

Let \(R_1 = \hat{R}_1\) be the localization of \(\hat{R}\) with respect to \(\hat{b}\), \(K_1\) the field of fractions of \(R_1\), \(b_1 = u R_1\). Notice that \(\dim R_1 = 1\). Denote by \(\hat{R}_1\) and \(\hat{K}_1\) the \(\hat{b}_1\)-adic completions of \(R_1\) and \(K_1\) respectively.

Lemma 4.2. Let \(P\) be a parabolic subgroup of \(G\) over \(\hat{R}\), which is minimal over \(K_1\). Then \(P(\hat{Q}) = G(\hat{Q})G(\hat{R})\).

Lemmas 4.1, 4.2 are generalizations of one-dimensional results of [9], and their proofs follow the same general pattern and use 3.1, 2.3, the local structure of the \(R\)-scheme \(\mathcal{F}\) of maximal tori of \(G\) in [4], and some facts from the Bruhat-Tits theory [2], applied to \(G(\hat{K}_1)\), as key ingredients. Combining 4.1, 4.2 and 5.2 (2) below, we obtain:

Lemma 4.3. Assume that \(\dim R = 2\) and that \(G(Q) = G(\hat{Q})P(\hat{Q})\) for a parabolic \(\hat{R}\)-subgroup \(P\) of \(G\) minimal over \(\hat{R}\). Then \(G(\hat{Q}) = G(Q)G(\hat{R})\).

Let \(S\) be a maximal \(R\)-split \(R\)-torus of \(G\), \(\Phi = \Phi(G)\) [resp. \(\Delta = \Delta(G)\)] the set of all (resp. all simple) \(R\)-roots of \(G\), \(U_\alpha\) the unipotent root \(R\)-subgroup of \(G\) corresponding to \(\alpha \in \Phi\), \(G_\alpha\) the \(R\)-subgroup of \(G\) generated by all \(U_\beta\) with \(\beta = k \alpha, k = \pm 1, \pm 2\). Let \(W\) be the Weyl \(R\)-group of \(G\) and \(w = r_{\alpha_1(\omega_1)} r_{\alpha_2(\omega_2)} \cdots r_{\alpha_n(\omega_n)}\) a reduced decomposition of \(w \in W(Q)\) into the product of reflections \(r_{\alpha(\omega)}\) with respect to simple roots \(\alpha(\omega), \alpha \in \Delta^*\). Denote by \(G^1(Q)\) the subgroup of \(G(Q)\) generated by all \(G_\alpha(Q), \alpha \in \Delta^*\).
Theorem 4.4. — Assume that \(\dim R = 2 \) and that \(G \) has a Borel subgroup \(B \) over \(R \). Denote \(B_n = B \times \circ \Gamma \). Then, for all \(\alpha \in \Delta^* \):

1. \(G_\alpha(K) = G_\alpha(Q) \times B_\alpha(K) \), and \(G(K) = G(Q) \times B(K) \).
2. There exists a system of representatives \(Y_\alpha(Q) \) of \(B_\alpha(K) \setminus B_\alpha(K) \cdot r_\alpha B_\alpha(K) \) in \(G_\alpha(Q) \), and the group \(G(Q) \) has a Bruhat-Steinberg decomposition

\[
G(Q) = \bigcup_{\omega \in \Omega} B(Q) Y_{\alpha_{\omega(1)}}(Q) Y_{\alpha_{\omega(2)}}(Q) \cdots Y_{\alpha_{\omega(\ell)}}(Q).
\]

Proof. — General results in [10] reduce the proof of Theorem 4.4 to the vanishing of \(H^1(Q_{2n}, B_n) \) which follows from 2.3 (2).

Corollary 4.5. — Assume that \(\dim R = 2 \) and that \(G \) has a Borel subgroup \(B \) over \(R \). Then \(G(Q) = G^1(Q) \times B(Q) \).

Proposition 4.6. — Let \(R \), \(G \) and \(B \) be such as in 4.5. Then \(G(Q) = G(Q) \times B(Q) \) and \(G(Q) = G(Q) \times G(R) \). If \(G_\alpha \) splits over \(R \), then \(G(Q) = G(Q) \times B(Q) \).

Proof. — We establish, first, the decompositions of 4.6 for \(G_\alpha \) and \(B_n = B \times \circ \Gamma \), for \(\alpha \in \Delta(G) \) or for \(\alpha \in \Delta(G \otimes \hat{R}) \), using the classification of quasi-split simple \(R \)-groups of \(R \)-rank 1, and the equality \(SL_2(Q) = SL_2(Q) \) [7]. We show then that if \(G_\alpha \) is simply connected, \(B_\alpha(Q) \subset G(Q) \) and, hence, \(G_\alpha(Q) \subset G(Q) \). These facts together with 4.5 and 4.1 imply 4.6.

5. Some properties of parabolic subgroups of \(G \). — In sections 5, 6 we shall assume that \(\dim R = 2 \) and (as in sections 3, 4) that the residue field of \(R \) is infinite.

Proposition 5.1. — (1) Let \(P \) be a parabolic subgroup of \(G \) over \(Q \). Then the canonical map \(\text{Ker } l(P) \rightarrow \text{Ker } l(G \otimes Q) \) is surjective.

(2) If \(G \) is quasi-split over \(R \), then \(\text{Ker } l(G \otimes Q) = 0 \).

Proof. — Statement (1) is true for an arbitrary Dedekind ring \(D \) and a reductive \(D \)-group \(G \) [8]. Statement (2) follows from (1), applied to a Borel \(R \)-subgroup of \(G \), and 2.3 (1).

Proposition 5.2. — (1) Let \(P \) be a parabolic subgroup of \(G \) over \(\hat{R} \). Then there exist \(\mathfrak{g} \in G(\hat{R}) \) and a parabolic subgroup \(P' \) of \(G \) over \(\hat{R} \) such that \(P' \otimes \hat{R} = P \mathfrak{g} P^{-1} \). In particular, if \(G \) is quasi-split over \(\hat{R} \), it is quasi-split over \(\hat{R} \).

(2) Let \(P \) be a minimal parabolic subgroup of \(G \) over \(\hat{R} \). Then \(P' \otimes \hat{R} \) is a minimal parabolic subgroup of \(G \) over \(\hat{R} \).

The proof uses the smoothness and the projectivity of the scheme \(\mathfrak{P} \) of parabolic subgroups of \(G \) [4].

6. Reduction and proof of Conjecture 1.2 (\(\dim R = 2 \)). — Let \(K \) be the field of fractions of \(R \). Denote \(\hat{R} = R/b \), \(\hat{K} = R/b \). Since \(\dim R = 2 \), \(\hat{R} \) is a discrete valuation ring and \(\hat{K} \) is the field of fractions of \(\hat{R} \).

Proposition 6.1. — Assume that Conjecture 1.3 is true for \(G \), and that \(G \) has a minimal proper parabolic subgroup \(P \) over \(\hat{K} \) for which \(G(Q) = G(Q) \times P(Q) \).

Then Conjecture 1.2 is true for \(G \).

Remark 6.2. — If Conjecture 1.4 holds for \(G \otimes R \), then \(G(Q) = G(Q) \times P(Q) \) by 4.1.

Proof. — Notice, first, that since the rings \(\hat{R} \) and \(\hat{R} \) are complete and \(G \) is smooth over \(R \), the natural maps \(i : H^1(\hat{R}, G) \rightarrow H^1(\hat{R}, G) \) and \(i : H^1(\hat{R}, G) \rightarrow H^1(\hat{R}, G) \) are bijections [4]. It has been proved in [9] that for the discrete valuation rings \(\hat{R} \) and \(\hat{R} \), \(\text{Ker } l(G \otimes \hat{R}) = \text{Ker } l(G \otimes \hat{R}) = 0 \). It follows from these facts that the
map \(\alpha(G) : H^1(\hat{\mathbb{R}}_m, G) \rightarrow H^1(\hat{\mathbb{R}}_{1,m}, G) \) has trivial kernel. The map \(m(G \otimes_{\mathbb{R}} \hat{\mathbb{R}}) : H^1(\hat{\mathbb{R}}_m, G) \rightarrow H^1(\hat{\mathbb{Q}}_m, G) \) factorizes through the composition \(l(G \otimes_{\mathbb{R}} \hat{\mathbb{R}}) \circ \alpha(G) \) and, hence, also has trivial kernel. Notice, that under the assumptions of 6.1, \(c(G) = 0 \) (prop. 4.3), and \(\text{Ker} l(G \otimes_{\mathbb{R}} \hat{\mathbb{Q}}) = 0 \) (Conjecture 1.3 for \(G \)). The triviality of \(\text{Ker} m(G \otimes_{\mathbb{R}} \hat{\mathbb{R}}) \) and \(c(G) \) implies that \(\text{Ker} l(G) = 0 \) (prop. 2.2). Since \(l(G) = l(G \otimes_{\mathbb{R}} \hat{\mathbb{Q}}) \circ m(G) \), we conclude that \(\text{Ker} l(G) = 0 \).

Theorem 6.3. — Let \(G \) be a reductive \(\mathbb{R} \)-group quasi-split over \(\mathbb{R} \).

Then Conjecture 1.2 is true for \(G \).

Proof. — The assumptions of 6.1 for such \(G \) are satisfied by 5.1 (2) and 4.6.

The author is grateful to Professors O. Gabber, B. Mazur, J.-P. Serre, R. Steinberg and J. Tits for their attention to this work and valuable critical remarks.

References

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, U.S.A.