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Abstract. This final project attempts to show the differences of ma-
chine learning and optimization. In particular while optimization is con-
cerned with exact solutions machine learning is concerned with general-
ization abilities of learners. We present examples in the areas of classifi-
cation and regression where this difference is easy to observe as well as
theoretical reasons of why this two areas are different even when they
seem similar at a first glance.

1 Introduction

Since the invention of computers people have been trying to answer the
question of whether a computer can ‘learn’, and before we start talking
about theorems and algorithms we should define what ‘learning’ means
for a machine. Arthur Samuel in 1959 defined machine learning as the
“field of study that gives computers the ability to learn without being
explicitly programmed”. At the beginning this field was mainly algorith-
mic and without much foundations, it was probably thanks to the work
of Valiant [6] who introduced the framework of PAC learning (proba-
bly approximately correct learning) that a real theory of the learnable
was established. Another milestone in the theory of learning was set by
Vapnik in [7]. Vapnik casts the problem of ‘learning’ as an optimization
problem allowing people to use all of the theory of optimization that was
already given. Nowadays machine learning is a combination of several
disciplines such as statistics, information theory, theory of algorithms,
probability and functional analysis. But as we will see optimization is
still at the heart of all modern machine learning problems. The layout
of the paper is as follows. First we present the definitions and nota-
tion needed, then we give a mathematical definition of learning and we
give the general optimization problem. In section 3 we present learning
guarantees and describe the principle of empirical risk minimization. In
the end we present experiments comparing the raw use of optimization
versus a combination of optimization and learning bounds.

2 Definitions

We will consider the following spaces: a space of examples X a space of
labels Y and a space of hypothesis H that contains functions mapping
X to Y. We will also consider a loss function L : Y × Y → R and a
probability measure P over the space X × Y.



Definition 1. For any hypothesis h ∈ H we define the risk of h with
respect to L and P to be:

LP (h) = E
P

(L(h(x), y))

The general problem of machine learning can be then cast as finding the
hypothesis h ∈ H that solves the following optimization problem:

min
h∈H
LP (h)

By having access only to a labeled sample S = (xi, yi)
n
i=1 ∈ X × Y. A

simplification of this scenario is given when the distribution P is given
only over the example space X and there exists a labeling function f :
X → Y in that case we are trying to find a hypothesis h such that it
solves the optimization problem:

min
h∈H

E
P

(L(h(x), f(x))

Example 1. Consider X = R2 and Y = {−1, 1}, suppose there’s a prob-
ability distribution Px over X and that the labeling function f is an
indicator function for a rectangle R ⊂ R2,i.e:

f(x) =


1 x ∈ R
−1 x /∈ R

If the loss function is the 0− 1 loss i.e L(y, y′) = 1 if y 6= y′ and 0 oth-
erwise, then a good hypotheses set would be that of indicator functions
of rectangles and the problem becomes that of finding the function that
minimizes

E
Px

[L(h(x), f(x))] = Px(h(x) 6= f(x))

Of course in the previous example f is a solution to the problem but we
clearly don’t know f and the only thing we have access to is a labeled
sample of points (xi, yi)

n
i=1 which is called the training data. And with

it we need to approximate the real solution as much as possible. This
introduces the definition of PAC learning [6]:

Definition 2. We say a problem is agnostically PAC-learnable if given
any (ε, δ) there exists an algorithm A such that after seeing a sample of
size n = n(ε, δ) the algorithm returns a hypothesis h such that

LP (h)−min
h∈H
LP (h) < ε

with probability at least 1 − δ over the sampling process and n(ε, δ) is
polynomial in ( 1

ε
, 1
δ
).

Example 2. If L is the 0−1 loss and we know that H contains a function
that has risk 0 then after seeing n examples any hypothesis consistent
with the examples verifies that with probability at least 1− δ [5]:

P (h(x) 6= y) <
log(|H|/δ)

n
So in this case we have a PAC-learnable problem with n = 1

ε
log(|H|/δ)

which is clearly polynomial on 1
ε

and 1
δ
.



The previous example has shown us that if H is finite and consistent
with the examples then the problem is PAC-learnable and not only that
but that the risk decreases in the order of O( 1

n
). Nevertheless asking that

the hypothesis set is consistent requires normally that we have an infinite
hypothesis set making the previous bound vacuous since it depends on
log(|H|). So can we give a bound of the same kind even if the number of
hypotheses we consider is infinite?
In the previous example the algorithm chose a hypothesis that had empir-
ical error equal to 0. The analogous of this algorithm when we don’t know
if there is a hypothesis consistent with the data is to find a hypothesis
that has the minimal error on the training data hn. We would hope that
as the size of the sample increases we would have hn → argminh∈H LP (h)
in some sense, and in fact under certain (reasonable) conditions:

Proposition 1. If a hypothesis class H has finite VC-dimension [7] then
it is true that L(hn)−minh∈H L(h)→ 0 in probability.

We wont dwell on the definition and properties of the VC-dimension
since that is just tangentially related to this paper. The previous propo-
sition assures us that we can approximate our original problem by simply
minimizing:

min
h∈H

1

n

nX
i=1

L(h(xi), yi)

This is known as empirical risk minimization (ERM) and in a sense is
the raw optimization part of machine learning, as we will see we will
require something more than that.

3 Learning Guarantees

Definition 3. Given a set of functions G = {g : Z → R} and a sample
S = (zi)

n
i=1 the empirical Rademacher complexity of G is defined by:

<S(G) = E
σ

 
1

n
sup
g∈G

nX
i=1

g(zi)σi

!
Where σi is a uniform random variable taking values in {−1, 1}. The
Rademacher complexity of G is simply the expectation of the empirical
Rademacher complexity:

<n(G) = E
S

(<S(G))

The Rademacher complexity measures how well the set G correlates with
noise. In a sense the smaller the rademacher complexity is then the less
expressive our function space is. The Rademacher complexity is in gen-

eral in the order of O(
q

d
n

. Where d is the VC-dimension.

Example 3. Let X = {x ∈ Rn|‖x‖ ≤ R}. The bounds on the Rademacher
complexities of certain hypotheses classes H = {h : Rd → R} are given
below:



H = {wTx|w ∈ Rn} <n(H) ≤
q

d+1
n

H = {wTx|‖w‖ ≤ Λ} <n(H) ≤
q

ΛR
n

H = Rectangles in Rn <n(H) ≤
q

2d
n

An interesting fact about the previous example is that the complexity
of the second hypotheses set does not depend on the dimension of the
space and just depends on the size of the vector w we will use this fact
later on to construct learning algorithms.
In what follows we will restrict our attention to two different problems
the one of classification which corresponds to the label space Y = {−1, 1}
and loss function equal to the 0− 1 loss as we’ve seen before. The other
problem is that of regression which corresponds to the label space Y = R
and loss equal to the square loss L(y, y′) = (y− y′)2. For those problems
we can argue the following:

Proposition 2. If L is the 0 − 1 loss function then given a sample
S = (xi, yi)

n
i=1, for any hypothesis h ∈ H the following is true with

probability at least 1− δ [4]:

LP (h) =
1

n

nX
i=1

L(h(xi), yi) + <n(H) +

r
log(2/δ)

n
(1)

If L is the square loss and L(h(x), y) ≤M for every (x, y) then

LP (h) =
1

n

nX
i=1

L(h(xi), yi) + 4M<n(H) +M

r
log(2/δ)

n
(2)

The above bounds express the ubiquitous problem in statistics and ma-
chine learning of bias-variance trade-off. In a sense if the set H is really
big then the best empirical error can be made really small at the cost of
increasing the value of the Rademacher complexity, on the other hand
a small class would have a small Rademacher complexity but it would
have to pay the price of increasing the best empirical error. So in a sense
we need to find the best hypothesis set for the data that we are given
and this is precisely the machine learning way of solving these problems.

4 Algorithms

4.1 Support Vector Machines

As we said in section 1 a natural way of solving a classification problem
would be that of empirical risk minimization. That is minimize

min
h∈H

nX
i=1

L(h(xi), yi)

Since we are dealing with the 0−1 loss we can rewrite the objective func-
tion as:

Pn
i=1 1h(xi)6=yi =

Pn
i=1 11 6=yih(xi) where 1z is just the indicator



function. This function is nevertheless non-differentiable and non-convex
and is thus not easy to minimize. In fact this problem is NP-hard so it is
pointless to try to minimize this function. To deal with this problem we
introduce the hinge loss or margin loss given by φ(y, y′) = max(0, 1−yy′)
this function is an upper bound to the 0− 1 loss as shown in the figure,
it is also convex and it turns out that [1]:

min
h measurable

E(L(h(x), y)] = min
h measurable

E(φ(h(x), y)

which is indeed a desirable property. Thus we can replace the minimiza-
tion problem by that of

min
h∈H

nX
i=1

max(0, 1− h(xi)yi)
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Fig. 1. Hinge loss is an upper bound for the 0− 1 loss

Now suppose the hypotheses class is given by linear functions h(x) =
wTx+ b for (w, b) ∈ Rn+1 thus the problem becomes:

min
w

nX
i=1

max(0, 1− yi(xTi w + b))



Or by adding some slack variables

min
w

nX
i=1

ζi

subject yi(x
T
i w + b) + ζi ≥ 1

ζi ≥ 0

This is an empirical risk minimization problem and it is a linear program
so we can easily solve it using the simplex method. Nevertheless we said
that we needed to take into account the complexity of the hypotheses
class in particular we want to make the Rademacher complexity small but
for vectors in Rd that term is on the order of

√
d+ 1 so if the dimension

is really big we might risk over-fitting data. This is known as the curse
of dimensionality. A way of controlling the complexity is by bounding
the norm of the vector w as it was seen in example 3, so if we constrain
‖w‖2 ≤ Λ we get:

min
w

nX
i=1

ζi

subject yi(x
T
i w + b) + ζi ≥ 1

ζi ≥ 0

‖w‖2 < Λ

We can introduce a Lagrange multiplier λ > 0 for the last constrain and
obtain

min
w

nX
i=1

ζi + λ‖w‖2 − λΛ

subject yi(x
T
i w + b) + ζi ≥ 1

ζi ≥ 0

Now here we assumed that we knew the optimal Lagrange multiplier for
the problem which is of course not true, but since we also don’t know
what is the best Λ we can just leave the problem as

min
w

nX
i=1

ζi + λ‖w‖2

subject yi(x
T
i w + b) + ζi ≥ 1

ζi ≥ 0

and this is the support vector machine (SVM) optimization problem. In
practice the parameter λ is tuned using cross-validation on a held-out
data set and that is what we did on this project.



4.2 Ridge Regression

If the loss function is the square loss then the natural optimization prob-
lem becomes

min
w,b

nX
i=1

((wTxi + b)− yi)2.

Using a similar line of thought as in SVM we realize that if we want
to control the complexity of the hypothesis space we need to bound
the norm of w and so as before the optimization gets a ’regularization’
parameter.

min
w,b

λ‖w‖2 +

nX
i=1

((wTxi + b)− yi)2.

This algorithm is known as ridge regression. The regularization param-
eter λ controls over-fitting of outliers as seen in the picture below.
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Fig. 2. Linear models for different values of λ. When λ = 0 the slope is over slanted
as it tries to fit the outlier as much as possible.



4.3 Adaboost

Boosting is a way of combining simple hypotheses to create more com-
plicated ones what it does is the following: at every iteration t it keeps a
distribution Dt over the training data, it picks the best classifier ht ∈ H
and picks a weight αt for this classifier, it then updates the distribution
Dt+1 by weighting more those points that were misclassified by ht and
after T rounds it returns the classifier hT =

Pn
i=1 αtht. The algorithm

is completely described below:

Algorithm 1 Adaboost pseudocode
Require: (xi, yi)

n
i=1

D1(xi)← 1/n
for i = 1→ T do

Find ht = argminh∈HDi(h(x) 6= y)
εt ← Di(ht(x) 6= y)
αt = 1

2
log 1−εt

εt

Dt+1(xi)← Dt(xi)e
−αtyiht(xi)

Zt
end for
return

PT
t=1 αtht
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Fig. 3. The exponential loss is an upper bound for the 0− 1 loss.



The term Zt appearing on the algorithm is simply a normalization factor.
We now see how to cast Adaboost as an optimization problem. Consider
the loss function L(h(x), y) = exp(−h(x)y) which is an upper bound for
the 0−1 loss as shown in the figure above. In [2] it is shown Adaboost is
doing coordinate descent on the loss function just described where every
iteration t is a step towards reducing the objective function. Although the
prove of this is not hard it is rather long and is omitted, the interested
reader can find the proof in [5]. Intuition tells us that we should let
our algorithm iterate as much as possible nevertheless this might lead
to overfitting (although not always), in practice what’s done is early
stopping which means to stop the iterations before achieving a minimum,
in this way we try to control the complexity of the hypothesis we are
creating. Other common practice to avoid overfitting is L1 regularization,
i.e. minimizing the function:

nX
i=1

exp

 
−

TX
t=1

αtht(xi)yi

!
+ ‖a‖1

In the experiments we present the standard Adaboost and analyze it’s
generalization ability.

5 Experiments

5.1 Classification

For the problem of classification we consider the data set of Arrhythmia
from the UCI repository (http://archive.ics.uci.edu/ml/datasets/Arrhythmia)
the data set consists of 452 instances with 279 attributes, we used 352
for training and 100 for testing. We present two different results.One
is obtained by using empirical risk minimization of the hingeloss. Since
this is a linear program we used the simplex algorithm to find the best
linear classifier, as it can be seen in the plot for different training sizes
the training accuracy was always 1. Nevertheless the testing accuracy
wasn’t as good as the one given by SVM. For SVM since the data set
was really small we did cross validation to tune the parameter λ only
for the smallest training size (58) and then left that value of λ = 16
for the rest of the training sizes. As you can see the algorithm is really
learning since the accuracy keeps steadily increasing as the training size
increases as opposed to empirical risk minimization where the testing er-
ror varies wildly from training size to training size. Another thing worth
noticing is that the training error is not as good as that of empirical risk
minimization, this should be clear since SVM doesn’t optimize this but
the training and testing error seem to be converging as predicted by the
bound (1)
The following experiment shows the use of Adaboost in the same data,
as our base classifiers we used stump functions: for every coordinate
i ∈ {1, . . . , 279} we define a set of hypotheses Hi = {h ∈ R|h(x) =
1 if xi < h} and H =

S
iHi. Since the amount of data wasn’t huge

we let Adaboost run for 8 iterations and reported the results, after 4
iterations of Adaboost the testing error is already at its minimum and
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Fig. 4. Accuracy of empirical risk minimization and SVM. Reg-train and reg-test rep-
resent the accuracy of the regularized algorithm (SVM)

afterwards it starts to increase while the training error keeps decreasing,
this is the overfitting effect that I described in the previous section and
the reason why early stopping is necessary as a regularization technique.
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5.2 Regression

We present the results on two different regression tasks. Both from
the UCI repository, the first one is the communities and crime data
(http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime) that
consists of 1994 points with 278 attributes each; we used 1800 for train-
ing and 194 for testing. As in the case of classification the λ parameter
was tuned by cross validation on the smallest training sample (400) and
left fixed to λ = 6. We plot the error of the hypotheses against the train-
ing sample size, the greatest advantage of ridge regression over simple
regression is seen when the sample size is small where the error is 20%
smaller the other plot shown is the square norm of the linear hypothe-
sis w, big values on the norm of w mean that the vector was trying to
explain the training data as good as possible, i.e it was overfitting.
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Table 1. Communities data. a)Accuracy of the regularized and unregularized version
of regression. b) Norm square of the vector w

The second data set is from the Insurance Company Benchmark which
is a classification problem in reality but can still be seen as a regression
problem, the size of the data set was of 9000 points with 86 attributes,
after cleaning the data we were left with 5500 points for training and
1000 points for testing. In this particular challenge we can appreciate
really well the advantages of regularization, the labels of the data were
mostly 0 with maybe less than 10% of them being one, while the non-
regularized regression tried to adapt to this labels, the regularized version
treats them more as outliers and focuses on getting the 0 labels correctly
as it can be seen in the norm plots where the regularized algorithm gives
vectors with norms really close to 0 and the unregularized version is
above 50 and it takes the algorithm to see 1000 points to realize that
those points are outliers.
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Table 2. Insurance Company Benchmark. a)Accuracy of the regularized and unregu-
larized version of regression. b) Norm square of the vector w

6 Implementations and software

A note on the implementation of the algorithms. SVM training and test-
ing was done with the lib-svm [3] library. The empirical risk minimization
was done using the simplex method. Since the data set wasn’t too big I
used the implementation I had in my previous homeworks. Nevertheless
for the biggest training set the algorithm was too slow and I ended up
using the R implementation of the simplex method. The training of Ad-
aboost was done in the whole training set, the implementation was done
in R from scratch. Regression and ridge regression being unconstrained
quadratic programs had a close form solution that was calculated ex-
actly. Nevertheless in regular regression when the amount of data was
too little compared to the dimensionality; positive semidefinite Hessians
were obtained, in order to be able to deal with these problems we added
10−4I to the Hessian to make the problem strictly convex.



7 Conclusions

The role of optimization in machine learning is crucial and it is always
necessary, in fact without the developments on quadratic programming
algorithms like SVM and ridge regression wouldn’t be used in practice
because of the size of the training samples. Nevertheless the use of raw
optimization without the aid of statistics can lead to serious mistakes
in experimental design as we showed in the experiments presented in
this project. Although the problems treated here were of a modest size I
believe that they still exemplify in a real way the problem of overfitting
and how to control the problem with the use of regularization and early
stopping. For really big data sets algorithms like SVM are no longer
useful since training on millions or billions of points becomes infeasible,
so people have turned to online learning which was something I wanted
to treat on my project but the lack of time didn’t allow me to.
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