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Abstract

Much of machine learning relies on comparing distributions with discrepancy
measures. Stein’s method creates discrepancy measures between two distributions
that require only the unnormalized density of one and samples from the other. Stein
discrepancies can be combined with kernels to define kernelized Stein discrepan-
cies (KSDs). While kernels make Stein discrepancies tractable, they pose several
challenges in high dimensions. We introduce kernelized complete conditional
Stein discrepancies (KCC-SDs). Complete conditionals turn a multivariate distri-
bution into multiple univariate distributions. We show that KCC-SDs distinguish
distributions. To show the efficacy of KCC-SDs in distinguishing distributions, we
introduce a goodness-of-fit test using KCC-SDs. We empirically show that KCC-SDs
have higher power over baselines and use KCC-SDs to assess sample quality in
Markov chain Monte Carlo.

1 Introduction

Discrepancy measures that compare a distribution p, known up to normalization, with a distribution
q, known via samples from it, can be used for finding good variational approximations (Ranganath
et al., 2016; Liu and Wang, 2016), checking the quality of MCMC samplers (Gorham and Mackey,
2015, 2017), goodness-of-fit testing (Liu et al., 2016), parameter estimation (Barp et al., 2019) and
multiple model comparison (Lim et al., 2019). There are several difficulties with using traditional
discrepancies like Wasserstein metrics or total variation distance for these tasks. Mainly, p can be
hard to sample so expectations under p cannot be computed. These challenges lead to the following
desiderata for a discrepancy D (Gorham and Mackey, 2015).

1. Tractable D uses samples from q, and evaluations of (unnormalized) p.

2. Distinguishing Distributions D(p, q) = 0 if and only if p is equal in distribution to q.

These desiderata ensure that the discrepancy is non zero when p does not equal q and that it can
be easily computed. To meet these desiderata, Chwialkowski et al. (2016); Oates et al. (2017);
Gorham and Mackey (2017); Liu et al. (2016) developed kernelized Stein discrepancies (KSDs). KSDs
measure the expectation of functions under q that have expectation zero under p. These functions are
constructed by applying Stein’s operator to a reproducing kernel Hilbert space (RKHS).

In high dimensions, many popular kernels evaluated on a pair of points are near zero. Thus, KSDs in
high dimensions can be near zero, making detecting differences between high dimensional distribu-
tions difficult. The median heuristic can be used to address this to some extent, but KSDs with the
median heuristic can still have low power in moderately high dimensions (see Figure 1, Jitkrittum
et al. (2017)). We develop kernelized complete conditional Stein discrepancies (KCC-SDs). These
discrepancies use complete conditionals: the distribution of one variable given the rest. Complete
conditionals are univariate distributions. Rather than using multivariate kernels, KCC-SDs use univari-
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ate kernels to ensure the complete conditionals match, making it easier to compare distributions in
high dimensions.

A given Stein discrepancy relies on a supremum over a class of test functions called the Stein
set. KCC-SDs differ from KSDs in that KCC-SDs compute a separate supremum for each complete
conditional. An immediate question is whether there is a computable closed form and whether the
discrepancy can be used to distinguish distributions. We show that KCC-SDs have a closed form and
distinguish between distributions. Computing KCC-SD requires sampling from a complete conditional
of q, which can be infeasible in some instances. To address this, we introduce approximate KCC-SD
that uses a learned sampler for the complete conditional.

To show the efficacy of KCC-SD and approximate KCC-SD in distinguishing distributions we introduce
a goodness-of-fit test (Chwialkowski et al., 2016). We show that KCC-SD and approximate KCC-SD
have higher power than KSD and other baselines. We empirically show that approximate KCC-SD
does not suffer from a loss in power due to an increase in dimension. We also demonstrate that
KCC-SD and approximate KCC-SD can be used to select sampler hyperparameters and can be used to
assess sample quality in a Gibbs sampler.

Related Work. There have been several lines of work which use factorizations of the distribution
p to address the curse of dimensionality. Wang et al. (2017); Zhuo et al. (2017) use the Markov
blanket of each node to define a graphical version of KSD to alleviate the curse of dimensionality.
Our approach does not presume a graphical structure of p or q. Wang et al. (2017) shows that unless
the graphical structure for p, qn match, the graph based KSD converging to zero does not imply that
qn converges in distribution to p.

Gong et al. (2020) introduce the maximum sliced kernelized Stein discrepancy (MAXSKSD), which
also uses low-dimensional kernels by projecting into a 1-dimensional space. Computing MAXSKSD
requires optimizing a projection direction that is specific to both sampling distribution q and the
unnormalized distribution p. This can be expensive when testing multiple distributions or when
changing the parameters of an unnormalized model to fit a collection of samples. Approximate KCC-
SD requires learning conditional distributions specific only to the sampling distribution q. Similar
to approximate KCC-SD with parametric conditional estimates, the closed form for MAXSKSD
depends on the optimal direction, therefore the power of their method depends on the quality of the
optimization, which can be difficult to guarantee for arbitrary log probabilities.

KSDs suffer from a computational cost that is quadratic in the number of samples. Huggins and
Mackey (2018) develop random feature Stein discrepancies RΦSD, which run in linear time and
perform as well as or better than quadratic-time KSDs; these ideas can be applied to KCC-SDs.
Chen et al. (2018) introduces the Stein points method which introduces a method to select points to
minimize the Stein discrepancy between the empirical distribution supported at the selected points
and the posterior.

Chwialkowski et al. (2016) introduced KSD as a test statistic for a goodness-of-fit test, which also
suffers from the curse of dimensionality due to the use of kernels in high dimensions, along with a
computational cost quadratic in the number of samples. Jitkrittum et al. (2017) introduce a linear-time
discrepancy, finite-set Stein discrepancy (FSSD). The authors introduce an optimized version of FSSD
which allows one to find features that best indicate the differences between the samples and the target
density. FSSD while having a computational cost linear in sample size, also leads to a test with lower
power in high dimensions.

2 Kernelized Stein Discrepancies

Stein’s method provides recipes for constructing expectation zero test functions of distributions known
up to a normalization constant. For a distribution p with a integrable score function1,∇x log p(x),
we can create a Stein operator, Ap, that acts on test functions f : Rd → Rd satisfying regularity and
boundary conditions (Proposition 1, (Gorham and Mackey, 2015)), such that

1The score function in general is the gradient of the log-likelihood with respect to the parameter vector. We
however refer to the gradient of the log-likelihood with respect to the input (Hyvärinen, 2005).
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Ep(x)
[
Ap(x)f(x)

]
= 0.

This relation called Stein’s identity is used to create Stein discrepancies S(q,Ap,H), defined as

S(q,Ap,H) = sup
f∈H

∣∣Eq(x)[Ap(x)f(x)]− Ep(x)[Ap(x)f(x)]
∣∣

= sup
f∈H

∣∣Eq(x) [Ap(x)f(x)
]∣∣ ,

where H is a function space known as the Stein set, with its functions satisfying some boundary
and regularity conditions. To make the Stein discrepancy simpler to compute, Chwialkowski et al.
(2016); Oates et al. (2017); Gorham and Mackey (2017); Liu et al. (2016) used reproducing kernel
Hilbert spaces (RKHS) as the Stein set to introduce kernelized Stein discrepancies (KSD). Let
k : Rd × Rd → R be the kernel of an RKHS Kk, the RKHS consists of functions, g : Rd → R,
satisfying the reproducing property g(x) = 〈g, k(x, ·)〉Kk . KSDs are defined by the Stein set

Gk =

{
g = (g1, . . . , gd) : gi ∈ Kk,

d∑
i=1

‖gi‖Kk ≤ 1

}
.

This construction of the Stein set using an RKHS ensures that the Stein discrepancy has a closed form.

Proposition 1 (Gorham and Mackey, 2017). Suppose k ∈ C(1,1) and for each j ∈ {1, . . . , d}, define
the Stein kernel as follows:

kj0(x,y) = bj(x)bj(y)k(x,y) +∇xj∇yjk(x,y) (1)

+ bj(x)∇yjk(x,y) + bj(y)∇xjk(x,y) ,

where bj(x) = ∇xj log p(x). If
∑d
j=1 Eq[k

j
0(x,x)

1/2
] <∞, then KSD has a closed form. Given by

S(q,Ap,Gk) = ‖w‖2, where w2
j ≡ Eq(x)×q(y)

[
kj0(x,y)

]
with x,y i.i.d∼ q.

When the distribution p lies in the class of distantly dissipative distributions (Eberle, 2016), KSDs
provably detect convergence and non-convergence for d = 1. That is S(qn,Ap,Gk) → 0 if and
only if qn ⇒ p for sequences {qn}, using kernels like the radial basis function or the inverse multi-
quadratic (IMQ), (Gorham and Mackey, 2017). In d > 2, the KSD with thin tailed kernels like
the RBF does not detect non-convergence. But the KSD with the IMQ kernel with β ∈ (0, 1) does
detect non-convergence. However, all of these kernels shrink as the ‖·‖2 grows, which means their
associated KSDs become less sensitive in higher dimensions.

Suppose x,y ∼ N(0, Id) then E[‖x− y‖2] = 2d, so k(x,y) = exp(−‖x− y‖2 /2σ2) concen-
trates around exp(−d/σ2). The median heuristic, σ = median(‖xi − xj‖ ; i < j), can be used to
deal with this shrinkage. However, (Ramdas et al., 2015) show that even with the median heuris-
tic, kernel based discrepancies can converge to zero as the dimension increases even when the
distributions are different.

3 Kernelized Complete Conditional Stein Discrepancies.

Complete conditionals are univariate conditional distributions, p(xj |x−j), where x−j =
{x1, . . . xj−1, xj+1, . . . xd}. Complete conditional distributions are the basis for many inference
procedures including the Gibbs sampler (Geman and Geman, 1984), and coordinate ascent variational
inference (Ghahramani and Beal, 2001).

Using complete conditionals we construct complete conditional Stein discrepancies (CC-SDs) and
their kernelized versions (KCC-SDs). In this work we focus on the Langevin-Stein operator (Barbour,
1990; Gorham and Mackey, 2015), defined for differentiable functions f : Rd → Rd as follows:

(Ap(x)f)(x) = f(x)
T∇x log p(x) +∇x · f(x) =

d∑
j=1

Ajp(x)fj(x) .

3



Definition. The score function of the complete conditional, ∇xj log p(xj | x−j), is the score
function of the joint,∇xj log p(x). So for fj : Rd → R,

Ajp(xj |x−j)
fj(x) = fj(x)∇xj log p(xj | x−j) +∇xjfj(x) = fj(x)∇xj log p(x) +∇xjfj(x)

= Ajp(x)fj(x)

Using this observation, and the fact that the complete conditionals of two distributions p, q match when
the distributions match, we define the complete conditional Stein discrepancy (CC-SD), S(q,Ap, C)
as

d∑
j=1

Eq(x−j)

[
sup
fj∈Cj

Eq(xj |x−j)[A
j
p(xj |x−j)

fj(x)]

]
. (2)

The Stein set C is defined as the set of functions, f : Rd → Rd, with each component fj(x)
satisfying max

(
‖fj‖∞ , ‖∇fj‖∞ , Lip(fj)

)
≤ 1, where Lip(f) is the Lipschitz constant of f . Here,

the supremum is taken inside the expectation, so we have to solve optimization problems for each
dimension and each conditional. Similar to Stein discrepancies, CC-SDs can be hard to compute. In
the next section, we introduce the kernelized version which has a closed form.

3.1 Kernelized Complete Conditional Stein Discrepancies.

We now define the Stein set, Ck, for the kernelized version of CC-SD, such that we get a closed form
discrepancy.

We use univariate integrally symmetric positive definite (ISPD) kernels, k : R× R→ R, that satisfy
the following, for g : R→ R: ∫

u∈R

∫
v∈R

g(u)k(u, v)g(v)dudv > 0 , (3)

with ‖g‖2 > 0. Let Kk denote the reproducing kernel Hilbert space (RKHS) with kernel k. Functions
h ∈ Kk satisfy the reproducing property, h(xj) = 〈h, k(xj , ·)〉Kk for xj ∈ R. The RKHS also
satisfies Φxj (·) = k(xj , ·) ∈ Kk.

We define Ck with a univariate kernel k, as consisting of functions, f : Rd → Rd, whose component
functions fj : Rd → R satisfy fj,x−j ≡ fj(·,x−j) ∈ Kk for each x−j . So fj with a fixed x−j is in
the RKHS defined by k. This means

fj,x−j (xj) = 〈fj,x−j , k(xj , ·)〉Kk . (4)

Let Cjk denote the set of functions satisfying Equation (4) with norm bounded by∥∥fj,x−j

∥∥
Kk
≤
∥∥∥Eq(xj |x−j)

[
Ajp(xj |x−j)

Φxj

]∥∥∥
Kk

, (5)

for all x−j ∈ Rd−1.

We define the kernelized complete conditional Stein discrepancy (KCC-SD) S(q,Ap, Ck) as follows,
d∑
j=1

Eq(x−j)

[∣∣∣∣∣ sup
fj∈Cjk

Eq(xj |x−j)

[
Ajp(xj |x−j)

fj(x)
]∣∣∣∣∣
]

(6)

KCC-SDs admit a closed form. In our definition of the Stein set, we can change the kernel or the
kernel parameters in each dimension, however for clarity we do not focus on that here. Note that the
Stein set depends on both distributions p and q. We show that the KCC-SD defined in Eq. (6) has a
closed form.
Theorem 1 (Closed form). For a kernel k which is differentiable in both arguments, we define the
Stein kernel for each j ∈ {1, . . . , d} as follows:

kjcc(xj , yj ;x−j) = Ajp(xj |x−j)
Ajp(yj |x−j)

k(xj , yj) (7)

= bj(xj ,x−j)bj(yj ,x−j)k(xj , yj) + bj(xj ,x−j)∇yjk(xj , yj)

+ bj(yj ,x−j)∇xjk(xj , yj) +∇xj∇yjk(xj , yj) ,

4



where bj(x) is equal to ∇xj log p(x) and if Eq(x−j)Eq(xj |x−j)Eq(yj |x−j)

[
kjcc(xj , yj ;x−j)

1/2
]
<

∞, then the KCC-SD can be computed in closed form as S(q,Ap, Ck) = ‖w‖22, where the weights,
wj are defined as w2

j = Eq(x−j)Eq(xj |x−j)Eq(yj |x−j)k
j
cc(xj , yj ;x−j).

The proof is in Appendix A. Theorem 1 implies that the functions, f∗j (xj ;x−j), which achieve the
supremum in Equation (6) are

f∗j (xj ;x−j) = Eq(yj |x−j)

[
Ajp(yj |x−j)

Φxj

]
(8)

= Eq(yj |x−j)[k(xj , yj)∇yj log p(yj | x−j) +∇yjk(xj , yj)] ,

where ∇yj log p(yj | x−j) = ∇yj log p(yj ,x−j) and Φxj (·) = k(xj , ·) is the feature map.

We can also restrict to functions to the unit ball,
∥∥fj,x−j

∥∥
Kk
≤ 1, and still get a closed form for the

KCC-SD: ∑
j

Eq(x−j)

√
Exj ,yj∼q(·|x−j)k

j
cc(xj , yj ;x−j) . (9)

However, the closed form cannot be easily manipulated.

KCC-SDs can distinguish two distributions. We show that S(q,Ap, Ck) = 0 if and only if p = q.
This proof relies on the ISPD property of the kernel and an equivalent form of the Stein operator when
the score function of q exists. For f : Rd → Rd, note that as Eq(x)

[
Aq(x)f(x)

]
= 0,

Eq(x)
[
Ap(x)f(x)

]
= Eq(x)

[
Ap(x)f(x)−Aq(x)f(x)

]
= Eq(x)

[
f(x)

T∇x (log p(x)− log q(x))
]
.

Using this representation, we prove that if p is equal to q in distribution, then KCC-SD is zero.

Theorem 2. Suppose k is an ISPD kernel and twice differentiable in both arguments, and
Eq(x)[‖∇x log p(x)‖2],Eq(x)[‖∇x log q(x)‖2] < ∞ where p(x), q(x) > 0 for all x ∈ Rd. If

p
d
= q, then S(q,Ap, Ck) = 0.

This property can be see by noting that when both p and q have score functions, their difference will
be zero inside the operator. The proof is available in Appendix C. Similarly if p is not equal to q in
distribution, KCC-SD will be able to detect that.

Theorem 3. Let k be integrally strictly positive definite. Suppose if S(q,Ap, Ck) < ∞, and
Eq(x)[‖∇x log p(x)‖2],Eq(x)[‖∇x log q(x)‖2] < ∞ with p(x), q(x) > 0, then if p is not equal
to q in distribution, then S(q,Ap, Ck) > 0.

The proof is in Appendix C. Combined with the previous result, this shows that KCC-SDs are
non-negative and zero only when the two distributions are equal.

4 KCC-SD in practice

Computing the optimal test function in KCC-SDs, f∗j (xj ;x−j), requires sampling from the complete
conditionals, yj ∼ q(· | x−j). In this section, we detail how to compute KCC-SD when the complete
conditionals can be sampled. We also present a sampling procedure which can be used to compute a
lower bound of KCC-SD when the complete conditionals cannot be exactly sampled.

Exact KCC-SD. In Algorithm 1 in Appendix A we describe how to compute KCC-SDs, given a
dataset {xi} and complete conditionals q(· | x−j) which can be sampled. For instance, KCC-SDs can
be used to assess the sample quality of samples from a Gibbs sampler. Here the Gibbs sampler can be
used to generate multiple auxiliary coordinates y(i,k)j ∼ p(· | x(i)

−j) using the sampling procedure for
the complete conditional used in the Gibbs sampler. The auxiliary coordinate variables can be used
to compute KCC-SD and can be used to assess the quality of the empirical distribution qn defined by
the samples {x(i)}ni=1.
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Approximate KCC-SD. Sampling from the complete conditional can be infeasible in several
scenarios. To resolve this, we introduce approximate KCC-SDs, Sλ(q,Ap, Ck). Suppose gj(x) =

Erλj (yj |x−j)[A
j
p(yj |x−j)

Φxj ], where rλj is a conditional distribution, then we define approximate
KCC-SD as

Sλ(q,Ap, Ck) =

d∑
j=1

Eq(x−j)Eq(xj |x−j)A
j
p(xj |x−j)

gj(x).

Algorithm 2 in Appendix B summarizes how to compute approximate KCC-SD. We split the dataset
{x}ni=1 into a training, validation and test set. We train a sampler on the training set and select the
model based on the lowest loss on the validation set, and then generate samples yj from that model.
KCC-SD is then computed on the test set.

The reduction to probabilistic regression can make use of powerful models, such as conditional kernel
density estimation (Hansen, 2004) or neural network based models. The quality of approximate
KCC-SD depends on the performance of the learned sampler on held-out data; this performance can
be checked on a validation set. Formally, if the distributions {rλj}

d

j=1
satisfy a ρ-transport inequality

(Definition 3.58, (Wainwright, 2019)) and satisfy supx−j
KL(q(·|x−j) || rλj ) < εj , then we can

bound the difference between approximate KCC-SD and KCC-SD.
Lemma 1. Suppose the model class rλj satisfies a ρ-transport inequality and ∇x log p(x) is Lips-
chitz and Eq[‖∇x log p(x)‖],Erλj [

∥∥∇xj log p(xj | x−j)
∥∥] <∞, and the kernel k is bounded with

∇xjk(xj , yj) Lipschitz, then

|S(q,Ap, Ck)− Sλ(q,Ap, Ck)| ≤
d∑
j=1

K1,j

√
2ρ2εj +

√
K2,j

√
2ρ2εj

where supx−j
KL(q(·|x−j) || rλj ) < εj and K1,j ,K2,j are positive constants.

The proof is in Appendix D. This gives us a selection criterion for selecting models, models with a
lower validation loss have approximate KCC-SD values closer to KCC-SD.

Goodness of Fit testing. To show the efficacy of KCC-SD and approximate KCC-SD in distinguish-
ing distributions, we introduce a goodness-of-fit test to test whether a given set of samples come from
a target distribution. Let the null be H0 : p = q, and the alternate be H1 : p 6= q. We do not compute
the asymptotic null distribution of the normalized test statistic, instead we use the wild-bootstrap
technique (Shao, 2010; Fromont et al., 2012; Chwialkowski et al., 2014, 2016). Define the function h
as

h(x(i)) =

d∑
j=1

1

m

m∑
k=1

kcc(x
(i)
j , y

(i,k)
j ;x

(i)
−j),

where y(i,k)j ∼ q(· | x(i)
−j). The test statistic Tn and the bootstrapped statistic Rn are defined as

Tn =
1

n

n∑
i=1

h(x(i)) and Rn =
1

n

n∑
i=1

εih(x(i)),

where εi are independent Rademacher random variables and x(i) are independently and identically
distributed from q. Sampling from the complete conditional is not always computationally feasible,
therefore we propose another test with approximate KCC-SD as the test statistic, which samples y(i,k)j

from the model rλj .

When the null hypothesis is true, the test statistic Tn converges to zero (see Theorem 2 for KCC-SD
and Lemma 5 in Appendix E for approximate KCC-SD), while Rn converges to zero under both
hypotheses. In Appendix E, we show that

√
nRn is a good approximation of

√
nTn, so we can

sample Rn and approximate the quantiles of the null distribution.

When using KCC-SD, under the alternate hypothesis, Tn converges to a positive constant (see
Theorem 3) while Rn converges to 0. Therefore, we reject the null hypothesis almost surely. The test
can be formulated as

6
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Figure 1: KCC-SD has more power in high dimensions. Left: Gaussian vs Laplace, with n = 1000
and increasing dimension. Approximate KCC-SD has no loss in power compared to baseline methods.
Middle and Right: Gaussian vs Laplace, with d = 30 and increasing sample size. For all sample
sizes studied, approximate KCC-SD has much higher power than the baseline methods, without
requiring significantly more compute time.
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Figure 2: Left: Quantile-Quantile plot showing that KCC-SD and approximate KCC-SD have uniform
p-values under the null, this was computed with d = 30 and n = 3000. Middle: Here we plot the
value of KCC-SD and approximate KCC-SD with p = N(0, Id) and q = N(0,Σ). Here the marginals
match but p 6= q. As the number of samples increase, both discrepancies stay bounded away from
zero. Right: Correlated Gaussian vs Correlated Gaussian with Laplace noise. As the dimension
increases KCC-SD does not see a decrease in performance unlike the baseline methods.

1. Compute the test statistic Tn.

2. Compute the estimates {Rn,l}Ll=1.

3. Estimate the 1− α empirical quantile of the samples.

4. Reject the null if Tn exceeds the quantile.

When using approximate KCC-SD, under the null Tn → 0 due to Stein’s identity (see Lemma 5 in
Appendix E) and the p-values are uniform. However, under the alternate the asymptotic behavior of
approximate KCC-SD depends on the model class rλj . We show in the experiments that approximate
KCC-SD has power 1 in comparison to baselines such as KSD, RΦSD and FSSD-OPT.

5 Experiments

We study KCC-SD and approximate KCC-SD on comparing distributions, selecting parameters in
samplers for Bayesian neural networks, and assessing the quality of Gibbs samplers for probabilistic
matrix factorization on movie ratings.

For computing RΦSD, we use the hyperbolic secant kernel with the median heuristic (Huggins and
Mackey, 2018). For the rest, we use the RBF kernel, k(x,y) = exp(−‖x− y‖2 /2σ2). KCC-SD
uses σ = 1, KSD uses the median heuristic, and FSSD-OPT learns the optimal σ parameter. For
FSSD-OPT we use the code and settings used by the authors in Jitkrittum et al. (2017).

To compute approximate KCC-SD we use a model for rλj based on histograms. Suppose the
samples xj are in an interval I . Divide the interval I into m bins with width 1

m and learn a neural
network fθj (x−j) which predicts the bin of xj from x−j . Sampling proceeds by sampling from the
categorical distribution bk ∼ Cat(fθj (x−j)), and returning the average of the bin corresponding to
bk, the sample from the categorical distribution. See Appendix F for details.
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Figure 3: Left: Here, we plot the log inverse ESS for comparison to approximate KCC-SD in assessing
quality of samples from SGLD. As we can see the inverse ESS is minimized at 10−3, and KCC-SD
is minimized at 10−5. Right: The value of block KCC-SD decreases when the number of iterations
goes up in the Gibbs sampler used for Bayesian Probabilistic Matrix Factorization.

Goodness-of-fit Tests. In the left panel of Figure 1 we compare samples from q =∏d
i=1 Laplace(0, 1/

√
2) and target density p = N(0, Id) with increasing dimension. We gener-

ate n = 1000 samples to compute the test statistics, and compute the power of the test over 300
repetitions with a significance level α = 0.05. We then observe that as the dimension increases, ap-
proximate KCC-SD has power 1 while other methods see a substantial decrease in power as dimension
increases. We show in Appendix F that similar results hold for the IMQ kernel.

In the middle panel of Figure 1 we plot the power of the test with q =
∏d
i=1 Laplace(0, 1/

√
2)

and p = N(0, Id) with d = 30. We then increase the number of samples used to compute the test
statistics. And in the right panel of Figure 1 we show the time used to compute approximate KCC-SD,
KSD, RΦSD and FSSD-OPT, the time for approximate KCC-SD also includes the training time for the
models. We observe that although approximate KCC-SD requires more time to compute, it has more
power than the baselines.

In the left panel of Figure 2 we compare p = q = N(0,Σ) in d = 30, with Σi,j = 0.5 for all i 6= j
otherwise Σi,i = 1.0. We show that for n = 3000 the distribution of the p-values is uniform.

In the middle panel of Figure 2, we have p = N(0, Id) and q = N(0,Σ) where Σi,j = 0.5 for i 6= j
and Σi,i = 1. The figure shows that both KCC-SD and approximate KCC-SD detect the differences
between these distributions.

In the right panel of Figure 2, we have p = N(0,Σ) with Σi,j = 0.5 and Σi,i = 2 and samples
xi = zi + εi, where εi ∼

∏d
j=1 Laplace(0, 1/

√
2) and zi ∼ N(0,Σ1) with (Σ1)i,j = 0.5 and

(Σ1)i,i = 1, and zi and εi are independent. The samples from q have the same mean and variance as
p. We compute n = 500 samples and increase the dimension. As the dimension increases, the power
of the test with approximate KCC-SD remains 1, while the baseline methods see a decline in power.

Selecting Biased Samplers. In this experiment we do posterior inference for a three-layer neural
network, with a sigmoid activation function, for a regression task. The hidden dimensions are 40 and
10. We make use of stochastic gradient Langevin dynamics (SGLD), a biased MCMC sampler (Welling
and Teh, 2011). We used the yacht hydrodynamics dataset (Gerritsma et al., 1981) from the UCI
dataset repository. Since biased methods trade sampling efficiency for asymptotic exactness, standard
MCMC diagnostics like effective sample size are not applicable as they do not account for asymptotic
bias. Selecting the stepsize ε is an important task to ensure the samples are approximately from the
posterior (Welling and Teh, 2011). For ε ∈ [10−8, 10−3] we run a chain generating 10,000 samples
with a burnin phase of 50,000 samples, with minibatch 256. We compare approximate KCC-SD to
effective sample size. The left panel in Figure 3 compares these two metrics. While ε = 10−6 has the
lowest KCC-SD value, the inverse effective sample size measure is minimized by the value ε = 10−2.

Detecting Convergence of a Gibbs Sampler for Matrix Factorization. We assess the conver-
gence of a Gibbs sampler for Bayesian probabilistic matrix factorization (Salakhutdinov and Mnih,
2008). We focus on a variant with two mean parameters µV and µU for user and movie feature
vectors Ui ∈ R10, Vj ∈ R10 and fixed the covariance matrix to the identity (see Appendix F for
details).
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In this experiment, we chose a subset of the Netflix Prize dataset, with 943 users and 1682 movies.
We sampled the posterior p(µU ,µV ,U ,V | R) in blocks {µU , µV , U1, . . . , UN , V1, . . . , VM} by
a Gibbs sampler. We ran the sampler for 26K iterations with no burnin. Since the Gibbs sampler
samples blocks of variables together, using these blocks of coordinates to compute KCC-SD is more
efficient. In Appendix B we describe block KCC-SD. We compute block KCC-SD by taking every 5th

sample and show the results in the right panel of Figure 3. As the number of samples increases, block
KCC-SD goes down. The sample quality of the Gibbs sample increases with the number of iterations.

6 Discussion

We developed kernelized complete conditional Stein discrepancies and approximate KCC-SD and
corresponding goodness-of-fit tests. We show that these discrepancies can distinguish distributions
which have smooth and integrable score functions. We also showed empirically that approximate
KCC-SD provides a higher power test than those based on KSD. An interesting avenue of research
would be relaxing the score function requirement for q and to compare the relative efficiency of the
test based on KCC-SD and approximate KCC-SD with baseline methods.

Broader Impact

Our work focuses on comparing distributions where one is known in functional form up to a constant.
The primary application of this method lies in probabilistic inference. Improvement in inference
could help in building models in domains like healthcare and neuroscience especially to propagate
uncertainty about the measurements. However, better inference could also mean better predictive
models which can have downsides like in surveillance.
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Ramdas, A., Reddi, S. J., Póczos, B., Singh, A., and Wasserman, L. (2015). On the decreasing power
of kernel and distance based nonparametric hypothesis tests in high dimensions. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Ranganath, R., Tran, D., Altosaar, J., and Blei, D. (2016). Operator variational inference. In Advances
in Neural Information Processing Systems, pages 496–504.

Salakhutdinov, R. and Mnih, A. (2008). Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Proceedings of the 25th international conference on Machine learning, pages
880–887.

Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association,
105(489):218–235.

Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer Science & Business
Media.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press.

Wang, D., Zeng, Z., and Liu, Q. (2017). Stein variational message passing for continuous graphical
models. arXiv preprint arXiv:1711.07168.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.

Zhuo, J., Liu, C., Shi, J., Zhu, J., Chen, N., and Zhang, B. (2017). Message passing stein variational
gradient descent. arXiv preprint arXiv:1711.04425.

10



A Closed Form

Proof. Define the Stein operator Ap(x) as follows,

(Ap(x)f)(x) =

d∑
j=1

(Ajp(xj |x−j)
fj)(x) =

d∑
j=1

fj(x)∇xj log p(x) +∇xjfj(x)

then if for all j, fj,x−j is in the RKHS of a univariate kernel, k, we can use the reproducing property,
fj,x−j (xj) = 〈fj,x−j , k(xj , ·)〉Kk (Steinwart and Christmann (2008)). Now, define the feature map
for each kernel kj , Φxj (·) = k(xj , ·), then as

∂xjfj,x−j (xj) = ∂xj 〈fj,x−j , k(xj , ·)〉Kk
= 〈fj,x−j , ∂xjk(xj , ·)〉Kk
= 〈fj,x−j , ∂xjΦxj 〉Kk

then note that we can use the reproducing property for general differential operators, Ajp(x), to get

(Ap(xj |x−j)fj)(x) = Ap(xj |x−j)〈fj,x−j , k(xj , ·)〉Kk
= 〈fj,x−j ,A

j
p(xj |x−j)

Φxj 〉Kk

Then we can define the norm of Ap(xj |x−j)Φxj , as follows:

〈Ap(xj |x−j)Φxj ,Ap(yj |x−j)Φyj 〉Kk = bj(xj ,x−j)bj(yj ,x−j)k(xj , yj) +∇xj∇yjk(xj , yj)

+ bj(xj ,x−j)∇yjk(xj , yj) + bj(yj ,x−j)∇k(xj , yj)

= kjcc(xj , yj ;x−j) (10)

where bj(u,x−j) = ∇u log p(u|x−j). Then we define the following

w2
j = Eq(xj |x−j)Eq(yj |x−j)

[
kccj (xj , yj ;x−j)

]
= Eq(xj |x−j)Eq(yj |x−j)

[
〈Ap(xj |x−j)Φxj ,Ap(yj |x−j)Φyj 〉Kk

]
= 〈Eq(xj |x−j)Ap(xj |x−j)Φxj ,Eq(yj |x−j)Ap(yj |x−j)Φyj 〉Kk (11)

=
∥∥Eq(xj |x−j)Ap(xj |x−j)Φxj

∥∥2
Kk

(12)

where xj , yj
i.i.d∼ q(· | x−j) and where we can interchange the inner product and expectation since

Ap(xj |x−j)Φxj is q-Bochner integrable, (Steinwart and Christmann (2008), Definition A.5.20).

We can find the closed form for KCC-SD, where KCC-SD is defined as follows:

S(q,Ap, Ck) =

d∑
j=1

Eq(x−j)

[
sup
fj∈Ck

∣∣∣Eq(xj |x−j)

[
Ajp(xj |x−j)

fj(x)
]∣∣∣]

For each j ∈ {1, . . . , d}, and x−j

sup
fj∈Ck

Eq(xj |x−j)

[
Ajp(xj |x−j)

fj(x)
]

= sup
fj :‖fj‖≤w2

j

〈fj ,Eq(xj |x−j)

[
Ap(xj |x−j)Φxj

]
〉Kk

=
∥∥Eq(xj |x−j)Ap(xj |x−j)Φxj

∥∥2
Kk

= Eq(xj |x−j)Eq(yj |x−j)

[
kjcc(xj , yj ;x−j)

]
hence, KCC-SD can be written in closed form as

S(q,Ap, Ck) =

d∑
j=1

Eq(x−j)Eq(xj |x−j)Eq(yj |x−j)

[
kjcc(xj , yj ;x−j)

]
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Here, we show that KCC-SDs can be expressed as an average of univariate KSDs. We can compute the
Stein kernel for KCC-SD as

kjcc(xj , yj ;x−j) = k(xj , yj)bj(xj ,x−j)bj(yj ,x−j) +∇xjk(xj , yj)bj(yj ,x−j)

+∇yjk(xj , yj)bj(xj ,x−j) +∇xj∇yjk(xj , yj),

=
(
Ap(xj |x−j)Ap(yj |x−j)k

)
(xj , yj)

where x−j ∈ Rd−1 is fixed, k : R × R → R, and bj(xj ,x−j) = ∇xj log p(xj | x−j). Using the
Stein kernel defined above we can compute KSD between p(· | x−j) and q(· | x−j) as follows

S
(
q(· | x−j),Ap(·|x−j),Gk

)2
= Eq(xj |x−j)Eq(yj |x−j)

[(
Ap(xj |x−j)Ap(yj |x−j)k

)
(xj , yj)

]
= Eq(xj |x−j)Eq(yj |x−j)

[
kjcc(xj , yj ;x−j)

]
.

Therefore, KCC-SD can also be computed as

S(q,Ap, Ck) =

d∑
j=1

Eq(x−j)Eq(xj |x−j)Eq(yj |x−j)

[
kjcc(xj , yj ;x−j)

]
=

d∑
j=1

Eq(x−j)

[
S
(
q(· | x−j),Ap(·|x−j),Gk

)2]
.

In Algorithm 1 we show how to compute KCC-SD exactly when we have samples from the complete
conditionals.

Algorithm 1: Computing KCC-SDs with complete conditionals
Input: Dataset {x(i)}ni=1, d: dimension of x, ny: number of yj samples and complete

conditionals q(· | x−j)
Output: Estimated KCC-SD Ŝn(q,Ap, Ck)
for j ∈ [d] do

for i ∈ [n] do
Sample y(i,k)j ∼ q(· | x(i)

−j) for k ∈ [ny]

end
Let ŵ2

j = 1
nny

∑n
i=1

∑ny
k=1 k

j
cc(x

(i)
j , y

(i,k)
j ;x

(i)
−j)

end
Let Ŝn(q,Ap, Ck) =

∑d
j=1 ŵ

2
j

B KCC-SD in practice

Block KCC-SD. In Gibbs sampling, when variables are sampled together, using blocks of coordi-
nates to compute KCC-SD will be computationally more efficient than using single coordinates. The
complete conditional approach still ensures that block KCC-SD distinguishes the distributions p and
q. For instance, if x ∈ Rd, then let I1, . . . , Im be disjoint partitions of indices {1, . . . , d} such that
∪mj=1Ij = {1, . . . , d}, then we can define block KCC-SD as

m∑
j=1

Eq(x−Ij )
sup
fIj

Eq(xIj |x−Ij )
[Ajp(xIj |x−Ij )

fIj (x)] ,

here the the dimension of the kernel would depend on the block size, so kj : RIj × RIj → R. The
supremum of the block KCC-SD is

m∑
j=1

Eq(x−Ij )
ExIj ,yIj∼q(·|x−Ij )

[
kjcc(xIj ,yIj ;x−Ij )

]
.

Note that if we take all the coordinates as one block, block KCC-SD is equivalent to KSD.
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Algorithm 2: Computing approximate KCC-SDs. Given model class rλj , compute approxi-
mate KCC-SD.

Input: Dataset D = {x(i)}ni=1, d: dimension of x, ny: number of yj samples, and a model
class rλj (· | x−j) for each complete conditional.

Output: Approximate KCC-SD
Split the dataset into training, validation and test sets.

for j ∈ [d] do
Train the sampler rλj on training set.
Select the model rλj with lowest validation loss.

for i ∈ [n] do
Sample y(i,l)j ∼ rλj (· | x

(i)
−j) for l ∈ [ny]

end
Let ŵ2

j = 1
n

∑n
i=1

1
ny

∑ny
l=1 kcc(x

(i)
j , y

(i,l)
j ;x

(i)
−j).

end
Let Ŝλ(q,Ap, Ck) =

∑d
j=1 ŵ

2
j

C Distinguishing Distributions

Here, we rely on the ISPD property of the kernel k(xj , yj) so that for any function f : R→ R, we
obtain

∫
u∈R

∫
v∈R

f(u)k(u, v)f(v)dudv > 0

for ‖f‖ > 0.

Note that we can write the Stein discrepancy as,

Eq(x)
[
Ap(x)f(x)

]
= Eq(x)

[
Ap(x)f(y)−Aq(x)f(x)

]
= Eq(x)

[
f(x)

T∇x log p(x) +∇x · f(x)
]
− Eq(x)

[
f(x)

T∇x log q(x) +∇x · f(x)
]

= Eq(x)
[
f(x)

T
(∇x log p(x)− log q(x))

]
= Eq(x)

[
f(x)

T∇x log
p(x)

q(x)

]
, (13)

using Eq(x)
[
Aq(x)f(x)

]
= 0.

Using this representation for our test function, f∗j (x) = Eq(yj |x−j)[A
j
p(yj |x−j)

k(xj , yj)], where
yj ∼ q(· | x−j), we see that

f∗j (x) = Eq(yj |x−j)[A
j
p(yj |x−j)

k(xj , yj)]− Eq(yj |x−j)[A
j
q(yj |x−j)

k(xj , yj)]

= Eq(yj |x−j)

[
k(xj , yj)∇yj log

p(yj | x−j)
q(yj | x−j)

]
= Eq(yj |x−j)

[
k(xj , yj)∇yj log

p(yj ,x−j)

q(yj ,x−j)

]
, (14)
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then using the fact that S(q,Ap, Ck) =
∑d
j=1 Eq(x)[A

j
p(x)f

∗
j (x)], we obtain using Eq. (13) and

Eq. (14)

S(q,Ap, Ck) = Eq(x)
[
f∗(x)

T∇x log
p(x)

q(x)

]
=

d∑
j=1

Eq(x−j)

[
Eq(xj |x−j)

[
f∗j (x)∇xj log

p(x)

q(x)

]]

=

d∑
j=1

Eq(x−j)

[
Eq(xj |x−j)Eq(yj |x−j)

[
∇yj log

p(yj ,x−j)

q(yj ,x−j)
k(xj , yj)∇xj log

p(x)

q(x)

]]
.

Now, observe that for each j ∈ {1, . . . , d}, with r(u,x−j) = ∇u log
p(u,x−j)
q(u,x−j)

, we define a function
h over x−j

h(x−j) = Eq(xj |x−j)Eq(yj |x−j)

[
∇yj log

p(yj ,x−j)

q(yj ,x−j)
k(xj , yj)∇xj log

p(x)

q(x)

]
= Eq(xj |x−j)Eq(yj |x−j) [r(yj ,x−j)k(xj , yj)r(xj ,x−j)]

=

∫
xj

∫
yj

q(xj | x−j)r(xj ,x−j)k(xj , yj)q(yj | x−j)r(yj ,x−j)dxjdyj

=

∫
xj

∫
yj

gx−j (xj)k(xj , yj)gx−j (yj)dxjdyj (15)

where gx−j (u) = q(u | x−j)r(u,x−j) = q(u | x−j)∇u log
p(u,x−j)
q(u,x−j)

.

The proofs in this section rely on the next lemma, which states that if the complete conditionals
match, then the distributions also match.

Lemma 2. If p(x), q(x) > 0 for all x ∈ Rd and p(xj |x−j) = q(xj |x−j) for all x−j and j, then
p(x) = q(x).

Proof (Lemma 2). We prove by induction. If dimension of x is 2, then p(x1|x2) = q(x1|x2) and
p(x2|x1) = q(x2|x1). Then we have∫

p(x1|x2)

p(x2|x1)
dx1 =

∫
p(x1)

p(x2)
dx1 =

1

p(x2)
,

and ∫
q(x1|x2)

q(x2|x1)
dx1 =

∫
q(x1)

q(x2)
dx1 =

1

q(x2)
,

which implies
1

p(x2)
=

∫
p(x1|x2)

p(x2|x1)
dx1 =

∫
q(x1|x2)

q(x2|x1)
dx1 =

1

q(x2)
.

Therefore, p(x2) = q(x2) for all x2.p(x1, x2) = p(x1|x2)p(x2) = q(x1|x2)q(x2) = q(x1, x2).

Assume the dimension of x is d. Then we have

p(x−{i,j})

p(x−i)
=

∫
p(x−j)

p(x−i)
dxi =

∫
p(xi|x−i)
p(xj |x−j)

dxi =

∫
q(xi|x−i)
q(xj |x−j)

dxi =

∫
q(x−j)

q(x−i)
dxi =

q(x−{i,j})

q(x−i)

for all j. Then p(xj |x−{i,j}) = q(xj |x−{i,j}) for all j. Since x−i is a (d − 1) dimensional
distribution, we can use the induction. Since p(xj |x−{i,j}) = q(xj |x−{i,j}) for all j, by induction,
we have p(x−i) = q(x−i). Therefore,

p(x) = p(xi|x−i)p(x−i) = q(xi|x−i)q(x−i) = q(x).
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Using Equation (13) we can see that if p d
= q, then Eq[Apf(x)] = 0 for f integrable and smooth.

The Stein set for KCC-SD, Ck, consists of such functions. We restate Theorem 2 for clarity.
Theorem. Suppose k ∈ C2,2(R,R) is an ISPD kernel and
Eq(x)[‖∇x log p(x)‖2],Eq(x)[‖∇x log q(x)‖2] < ∞ where p(x), q(x) > 0 for all x ∈ Rd.

If p d
= q, then S(q,Ap, Ck) = 0.

Proof (Theorem 2). If p d
= q, then the score functions match and using Equation (13), for all f such

that Eq(x)‖f(x)‖2 <∞, then

Eq(x)
[
Ap(x)f(x)

]
= Eq(x)

[
f(x)

T∇x log
p(x)

q(x)

]
= 0

Since all f ∈ Ck satisfy Eq(x)‖f(x)‖2 <∞, S(q,Ap, Ck) = 0.

Similarly, using Equation (13) we can show that when p 6= q, then KCC-SD will be strictly greater
than zero. This relies on the fact that if two measures are not equal, then on the set where they are not
equal, the complete conditionals will not match. We can exploit this property to show that KCC-SD
will not be zero for such distributions. We restate Theorem 3 for clarity.
Theorem 4. Let k be integrally strictly positive definite. Suppose if S(q,Ap, Ck) < ∞, and
Eq(x)[‖∇x log p(x)‖2],Eq(x)[‖∇x log q(x)‖2] < ∞ with p(x), q(x) > 0, then if p is not equal
to q in distribution, then S(q,Ap, Ck) > 0.

Proof (Theorem 3). Suppose p 6= q in distribution, then by Lemma 2 there exists a j ∈ {1, . . . , d}
and a set B−j ⊂ Rd−1, with md−1(B−j) > 0 where md−1 is Lebesgue measure, such that for each
x−j ∈ B−j there exists a set Aj,x−j ⊂ R with m1(Aj,x−j ) > 0, where the complete conditional do
not match. Then as the complete conditionals, p(xj | x−j), q(xj | x−j), do not match on Aj,x−j ,
the ratio of the score functions do not match, so for x−j ∈ B−j and u ∈ Aj,x−j ,

gx−j (u) = q(u | x−j)∇xj log
p(u,x−j)

q(u,x−j)
6= 0 .

As q has full support, for all x−j ∈ B−j we have gx−j (u) 6= 0 on Aj,x−j , this implies that the L2

norm of this function is not zero,
∥∥gx−j

∥∥
2
6= 0. Thus, for x−j ∈ B−j , by the ISPD property of the

kernel,

h(x−j) =

∫
xj

∫
yj

gx−j (xj)k(xj , yj)gx−j (yj)dxjdyj > 0

and since md−1(B−j), Eq(x−j)[h(x−j)] > 0. Thus, S(q,Ap, Ck) > 0.

D Proof of Lemma 4: Bounding the gap in approximate KCC-SD

To prove Lemma 4 we make use of the following lemma (Gorham and Mackey, 2017) to bound the
difference between the expectation of the Stein operator on different distributions.
Lemma 3. Suppose ∇x log p(x) is Lipschitz and L2(q) ∩ L2(r), and f and ∇xf are uniformly
bounded and Lipschitz, then we can show that∣∣Eq(x)[Ap(x)f(x)]− Er(y)[Ap(y)f(y)]

∣∣ ≤ K1W2(q, r) +
√
K2W2(q, r),

where K1,K2 are positive constants.

Proof. Suppose the score function, sp(x) = ∇x log p(x), is Lipschitz and the function f is bounded
with a Lipschitz derivative then we can bound the approximation error as follows∣∣Eq(x) [Ap(x)f(x)

]
− Er(y)

[
Ap(y)f(y)

]∣∣ ≤ ∣∣Eq(x) [f(x)T sp(x)
]
− Er(y)

[
f(y)T sp(y)

]∣∣
+
∣∣Eq(x)∇x · f(x)− Er(y)∇y · f(y)

∣∣
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Now, assume that f is bounded and ∇ log p is Lipschitz and so is ∇xf . Then, we can bound the
second term above as follows∣∣Eq(x)∇x · f(x)− Er(y)∇y · f(y)

∣∣ ≤ L(∇f)E[‖x− y‖2],

where L(h) is the Lipschitz constant of the function h and B(h) = supx ‖h(x)‖2.

Similarly, we split the first term as follows∣∣Eq(x) [f(x)T sp(x)
]
− Er(y)

[
f(y)T sp(y)

]∣∣ ≤ ∣∣E [f(x)T (sp(x)− sp(y))
]∣∣

+
∣∣E[sp(y)T (f(y)− f(x))]

∣∣ .
We can then bound the first term above using the fact that the function f is bounded and the score
function is Lipschitz.∣∣E [f(x)T (sp(x)− sp(y))

]∣∣ ≤ B(f)L(∇ log p)E[‖x− y‖2]

and similarly we can bound the second term by using the fact that the function f is bounded and
Lipschitz and the the score function is square integrable,∣∣E[sp(y)T (f(y)− f(x))]

∣∣ ≤ E[‖f(y)− f(x)‖2 ‖sp(y)‖2]

≤ E [min (2B(f), L(f) ‖x− y‖2) ‖sp(y)‖]

and then using the fact that min(a, b) ≤
√
ab for a, b ≥ 0, and applying Cauchy-Schwarz again we

obtain ∣∣E[sp(y)T (f(y)− f(x))]
∣∣ ≤√2B(f)L(f)E

[
‖x− y‖

1
2
2 ‖sp(y)‖2

]
≤
√

2B(f)L(f)

√
E [‖x− y‖2]E

[
‖sp(y)‖22

]
.

We can then bound the all the terms by∣∣Eq(x)[Ap(x)f(x)]− Er(y)[Ap(y)f(y)]
∣∣ ≤ K1E [‖x− y‖2] +

√
K2E[‖x− y‖2],

where K1 = L(∇f) +B(f)L(∇ log p) and K2 = 2B(f)L(f)Er[‖sp(y)‖2] are constants. Now, by
taking the infimum over all joint distributions P on x and y, where the marginals match with q and r,
we obtain ∣∣Eq(x)[Ap(x)f(x)]− Er(y)[Ap(y)f(y)]

∣∣ ≤ K1W2(q, r) +
√
K2W2(q, r),

where the Wasserstein distance is defined as W2(p, q) = infP,x∼p,y∼q EP [‖x− y‖2].

Suppose a distribution q satisfies a ρ-transport inequality (Definition 3.58, (Wainwright, 2019)), then
for any distribution p we have the following inequality

W2(q, p) ≤
√

2ρ2D(p, q), (16)

where D is the KL divergence. We make use of the ρ-transport inequality to bound the Wasserstein-2
in the bound proved in Lemma 3.

For brevity we refer to the complete conditional q(xj | x−j) as q|x−j (xj). And we restate Lemma 4
below for reference.
Lemma 4. Suppose the model class rλj satisfies a ρ-transport inequality and ∇x log p(x) is Lips-
chitz and Eq[‖∇x log p(x)‖],Erλj [

∥∥∇xj log p(x | x−j)
∥∥] < ∞, and the kernel k is bounded with

∇xjk(xj , yj) Lipschitz, then

|S(q,Ap, Ck)− Sλ(q,Ap, Ck)| ≤
d∑
j=1

K1,j

√
2ρ2εj +

√
K2,j

√
2ρ2εj

where supx−j
KL(q(·|x−j) || rλj ) < εj and K1,j ,K2,j are positive constants.
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Proof of Lemma 4. Suppose the complete conditionals rλj satisfy a ρ-transport inequality Equa-
tion (16). Then suppose f is bounded and has a Lipschitz derivative then using Lemma 3 we get the
following bound for each j,∣∣∣Eq(xj |x−j)[Ap(xj |x−j)f(xj)]− Erλj (yj |x−j)[Ap(yj |x−j)f(yj)]

∣∣∣ ≤ K1,jW2(rλj , q) +
√
K2,jW2(rλj , q)

≤ K1,j

√
2ρ2D(q|x−j , rλj )

+

√
K2,j

√
2ρ2D(q|x−j , rλj ).

Note Lemma 4 follows from Lemma 3 as the function h(yj) = Eq(xj |x−j)[Ap(xj |x−j)k(xj , yj)]
satisfies the boundedness and Lipschitz assumption for Lemma 3. Therefore, we can show that if
εj = supx−j

KL(q|x−j , rλj ) then

|S(q,Ap, Ck)− Sλ(q,Ap, Ck)| ≤
d∑
j=1

Eq(x−j)

∣∣∣Erλj (zj |x−j)Aph(zj)− Eq(yj |x−j)Aph(yj)
∣∣∣

≤
d∑
j=1

K1,j
√
εj +

√
K2,j

√
2ρ2εj .

E Goodness of fit Testing

In this section we show that

1. When the null hypothesis is true, the bootstrapped statistics can be used to approximate
quantile of the null distribution, so

sup
β

∣∣∣P [√nTn > β
]
− P

[√
nRn > β | {x(i)}i≤n

]∣∣∣→ 0

as n→∞. This holds when the test statistic is computed using either KCC-SD or approxi-
mate KCC-SD.

2. When the alternate hypothesis is true, the test statistic computed using KCC-SD converges to
a positive constant almost surely (Theorem 3), that is P[Tn > 0]→ 1. And this leads to an
almost sure rejection of the null asymptotically.

3. When the alternate hypothesis holds, the asymptotic behaviour of the test with approximate
KCC-SD depends on the model rλj .

The goodness-of-fit test using approximate KCC-SD makes use of the fact that approximate KCC-SD
converges to zero as the number of samples increases, this can be seen immediately using Stein’s
identity. Stein’s identity states that for bounded functions f with a bounded derivative (Proposition 1,
Gorham and Mackey (2015)), which vanish at infinity,

Ep(x)
[
Ap(x)f(x)

]
= 0.

Using Stein’s identity we show that when p = q, approximate KCC-SD, Sλ(q,Ap, Ck), is zero.
Lemma 5. Suppose k is bounded and twice differentiable in both arguments with bounded
derivatives and both k(xj , yj) and ∇xjk(xj , yj),∇yjk(xj , yj) vanish at infinity, and the score
function ∇yj log p(yj | x−j) ∈ L2(rλj ) for q(x−j) almost surely and rλj is a density and
Eq(x)[‖∇x log p(x)‖22],Eq(x)[‖∇x log q(x)‖22] <∞. Then if p = q, we have the following

Sλ(q,Ap, Ck) =

d∑
j=1

Eq(x−j)Eq(xj |x−j)A
j
p(xj |x−j)

gj(x) = 0,

where gj(x) = Erλj (yj |x−j)[A
j
p(yj |x−j)

k(xj , yj)].
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Proof of Lemma 5. We show that approximate KCC-SD is zero when p = q by using Stein’s identity,
which states that for bounded functions f with a bounded derivative and which vanish at infinity, we
have the following

Ep(x)
[
Ap(x)f(x)

]
= 0

We show that the function gj(xj ;x−j) = Erλj (yj |x−j)[A
j
p(yj |x−j)

k(xj , yj)] is bounded, with a
bounded derivative and vanishes at infinity in xj with a fixed x−j . Now, using Cauchy-Schwarz we
have

|gj(xj ;x−j)| ≤
∣∣∣Erλj (yj |x−j)k(xj , yj)∇yj log p(yj ,x−j)

∣∣∣+ Erλj (yj |x−j)

∣∣∇yjk(xj , yj)
∣∣ (17)

≤
√
Erλj (yj |x−j)[k(xj , yj)2]Erλj (yj |x−j)[∇yj log p(yj ,x−j)2]

+ Erλj (yj |x−j)

∣∣∇yjk(xj , yj)
∣∣ .

As the kernel k and its derivative are bounded and both vanish at infinity and ∇yj log p(yj | x−j) ∈
L2(rλj ) for q(x−j) almost surely, we have that the function gj is bounded and as xj → ∞ the
function gj converges to zero.

We also show that the function gj has a bounded derivative with respect to xj . Using the inequality
from Equation (17) we obtain∣∣∇xjgj(xj ;x−j)∣∣ ≤ ∣∣∣Erλj (yj |x−j)∇xjk(xj , yj)∇yj log p(yj ,x−j)

∣∣∣+ Erλj (yj |x−j)

∣∣∇yj∇xjk(xj , yj)
∣∣

≤
√
Erλj (yj |x−j)[∇xjk(xj , yj)2]Erλj (yj |x−j)[∇yj log p(yj ,x−j)2]

+ Erλj (yj |x−j)

∣∣∇xj∇yjk(xj , yj)
∣∣ .

Therefore, as the function is bounded and vanishes at infinity with a bounded derivative, using Stein’s
identity (Proposition 1, Gorham and Mackey (2015)) for the univariate complete conditionals, we can
show that for q(x−j) almost surely the following holds

Eq(xj |x−j)A
j
p(xj |x−j)

gj(xj ;x−j) = 0.

as p = q.

This implies that Sλ(q,Ap, Ck) =
∑d
j=1 Eq(x−j)Eq(xj |x−j)A

j
p(xj |x−j)

gj(xj ;x−j) = 0.

Now, we show that under the null, the bootstrapped statistics
√
nRn can be used to estimate the

quantiles of the null distribution. Define the test statistic Tn as follows

Tn =
1

n

n∑
i=1

h(x(i))

h(x(i)) =

d∑
j=1

1

m

m∑
k=1

kcc(x
(i)
j , y

(i,k)
j ;x

(i)
−j),

where y(i,k)j ∼ q(· | x(i)
−j) for KCC-SD and y(i,k)j ∼ rλj (· | x

(i)
−j) for approximate KCC-SD. Under the

null we have that Tn → 0 (Theorem 2 for KCC-SD and Lemma 5 for approximate KCC-SD) almost
surely. Then assuming that x(i) i.i.d∼ q we have

√
nTn =

1√
n

n∑
i=1

h(x(i))⇒ N(0, σ2
H0

).

as E[h(x(i))] = 0 and E
[
h(x(i))

2
]
<∞.
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Figure 4: KCC-SD has more power than baseline methods with the IMQ kernel. Left: We
compute n = 1000 samples from q =

∏d
i=1 Laplace(0, 1/

√
2) with target density p = N(0, Id),

and plot the power with increasing dimension. Middle and Right: Here we have samples from the
same p and q distributions as before, but for fixed d = 30 we increase the number of samples n to
show the number of samples required and computation time for baseline methods to achieve similar
power as KCC-SD.

In this work, we do not compute the variance and therefore we use the wild bootstrap procedure
(Shao, 2010; Fromont et al., 2012; Chwialkowski et al., 2014, 2016). We then define the bootstrapped
statistic Rn as

Rn =
1

n

n∑
i=1

εih(x(i)),

where εi are independent Rademacher random variables. Then note that under the null and under the
alternate Rn → 0 almost surely. We also observe that under the null

√
nRn =

1√
n

n∑
i=1

εih(x(i))⇒ N(0, σ2
H0

).

Note, the mean and variance of the normalized bootstrapped statistics match that of the normalized
test statistic

√
nTn,

E[εih(x)] = 0, and E[εih(x)
2
] = E[h(x(i))

2
].

Therefore, under the null we have supβ

∣∣∣P [
√
nTn > β]− P

[√
nRn > β | {x(i)}ni=1

]∣∣∣→ 0.

Under the alternative hypothesis, we note that by Theorem 3, Tn → C > 0, when using KCC-SD.
While, Rn → 0 almost surely, therefore as P[Tn > 0]→ 1 we reject the null almost surely.

When using approximate KCC-SD as a test statistic, the probability of rejection asymptotically is
controlled by the quality of the model rλj as can be seen using Lemma 4,

|Sλ(q,Ap, Ck)− S(q,Ap, Ck)| ≤
d∑
j=1

K1,j
√
εj +

√
K2,j

√
2ρ2εj .

where εj = supx−j
KL(q|x−j , rλj ).

F Experiments

For the histogram-based sampler we use in our experiments, we use a two-layer neural network with
15-dimensional hidden-layer with a sigmoid activation function. We train the model with gradient
descent for 500 epochs. We select the model with the lowest validation loss.

For FSSD-OPT we use 20% of the samples for training and in approximate KCC-SD we use 20% for
training and 10% for validation.

The p-value is computed as the proportion of the bootstrapped statistics, Rn, greater than the test
statistic, Tn. And the power is computed as the proportion of p-values less than the significance level,
in other words the power is the rejection rate of the null when the alternate hypothesis is true.
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Figure 5: Left: Correlated Gaussian vs Correlated Gaussian with Laplace noise. As the dimension
increases KCC-SD does not see a decrease in performance unlike the baseline methods. We use
the IMQ kernel here. Right: As we add larger bias terms to the acceptance probability in the inner
Metropolis sampler, samples from Metropolis-within-Gibbs sampler give larger KCC-SD.

Choice of Kernel and Goodness-of-Fit tests. All the experiments done with approximate KCC-
SD, KSD and FSSD-OPT were done using the RBF kernel. The RBF kernel, a C0 kernel (Definition
4.1, Carmeli et al. (2010)), suffices in defining consistent goodness-of-fit tests when comparing
independent samples from a distribution q (Theorem 2.2, Chwialkowski et al. (2016)).

Gorham and Mackey (2017) construct a sequence of empirical distributions, qn, which does not
converge to any distribution, a non-tight sequence. However, they prove that when comparing
sequences qn with p = N(0, Id) KSD with the RBF kernel still converges to zero. For this purpose
they show that if KSD is computed with the IMQ kernel then KSD can enforce uniform tightness
(Theorem 6, Gorham and Mackey (2017)).

However, as we have independent samples from a distribution q, this situation does not arise and
we can use the RBF kernel. In Figure 4 we repeat the experiments from Figure 1 with IMQ kernel.
In the left panel, we compare the power of the test using KCC-SD, RΦSD, KSD and FSSD-OPT with
q =

∏n
i=1 Laplace(0, 1/

√
2) and p = N(0, Id). We compute n = 1000 samples and then increase

the dimension.

In the center and right panel of Figure 4, we compare the same distribution as above in d = 30 with
an increasing number of samples. We observe that KCC-SD requires less samples than the baseline
methods to have power 1, and for the baseline methods to have the same amount of power requires a
similar amount of computation.

In the left panel of Figure 5, we have p = N(0,Σ) with Σi,j = 0.5 and Σi,i = 2 and samples
xi = zi + εi, where εi ∼

∏d
j=1 Laplace(0, 1/

√
2) and zi ∼ N(0,Σ1) with (Σ1)i,j = 0.5 and

(Σ1)i,i = 1, and zi and εi are independent. The samples from q have the same mean and variance as
p. We compute n = 500 samples and increase the dimension. As the dimension increases, the power
of the KCC-SD test with the IMQ kernels remains 1, while the baseline methods with the IMQ kernels
see a decline in power.

Detecting Convergence of a Gibbs Sampler for Matrix Factorization. Here we provide details
of the probabilistic model considered in the experiments section for assessing the convergence of
a Gibbs sampler for Bayesian probabilistic matrix factorization (Salakhutdinov and Mnih, 2008).
We focus on a variant with two mean parameters µV and µU for user and movie feature vectors
Ui ∈ R10, Vj ∈ R10 and fixed the covariance matrix to the identity.

p(U |µU ) =

N∏
i=1

N(Ui|µU , I), p(µU ) = N(0, I)

p(V |µV ) =

M∏
j=1

N(Vj |µV , I), p(µV ) = N(0, I)

p(R | U ,V ) =

N∏
i=1

M∏
j=1

[
N(Rij | UTi Vj , I)

]Iij
where Ui, Vj have normal priors and Iij is the indicator variable that is one if user i rated movie j
and 0 otherwise (see Appendix F).
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Selecting Biased Samplers. We use a simple bimodal Gaussian mixture model to demonstrate the
power of KCC-SD in distinguishing biased samplers,

xi ∼
1

2
N(θ1, 2) +

1

2
(θ2, 2) ,

where θ1, θ2 have standard normal priors. We draw 100 samples of xi from the model with
(θ1, θ2) = (1,−1). We choose Metropolis-within-Gibbs to sample from the posterior over θ.
This sampler uses a Metropolis sampler to sample each complete conditional inside the Gibbs sam-
pler. We also use the Metropolis step to generate auxiliary variables used to calculate KCC-SD.
Denote q(θ) to be the target distribution. The inner Metropolis step accepts the candidate θnew
with probability min (1, q(θnew)/q(θold)). Then we add a bias term to the acceptance probability,
min (1, q(θnew)/q(θold) + bias), thus the sampler is not unbiased anymore. We run for 60,000
iterations in total and drop the first 50,000 for burn-in. We show KCC-SDs versus size of the bias
terms in the right panel of Figure 5. KCC-SD increases with the size of the bias.
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