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Abstract

Survival analysis, the art of time-to-event modeling, plays an important role in clinical
treatment decisions. Recently, continuous time models built from neural ODEs have been
proposed for survival analysis. However, the training of neural ODEs is slow due to the high
computational complexity of neural ODE solvers. Here, we propose an efficient alternative
for flexible continuous time models, called Survival Mixture Density Networks (Survival
MDNs). Survival MDN applies an invertible positive function to the output of Mixture
Density Networks (MDNs). While MDNs produce flexible real-valued distributions, the in-
vertible positive function maps the model into the time-domain while preserving a tractable
density. Using four datasets, we show that Survival MDN performs better than, or similarly
to continuous and discrete time baselines on concordance, integrated Brier score and inte-
grated binomial log-likelihood. Meanwhile, Survival MDNs are also faster than ODE-based
models and circumvent binning issues in discrete models.

1. Introduction

Survival analysis serves as an important tool in healthcare to assess the risk of events,
such as onset of disease (Wilson et al., 1998) or death (Pocock et al., 1982), rehospitaliza-
tion (Patterson and Lee, 1998) and discharge from hospital (Wang et al., 2020). Survival
modeling has been widely used in clinical applications, including improving the prognosis
of cancer (Faradmal et al., 2012; Goldstraw et al., 2016; Wang et al., 2019; Lin and Anisa,
2021; Wang et al., 2021), predicting the onset of septic shock (Henry et al., 2015), assessing
the survival time of heart failure patients (Ahmad et al., 2017; Kojoria et al., 2004; Jones
et al., 2019; Yin et al., 2022) and estimating the graft survival rate of kidney transplant
patients (Lee et al., 2019; Rodrigues et al., 2019).

Given patients’ electronic health records including lab tests, vitals, radiology results and
clinical notes, doctors need to determine the level of treatment based on the level of risk. For
example, WHO guidelines suggest more aggressive treatments for higher risk cardiovascular
disease patients (WHO et al., 2007). Therefore, an accurate model of risk is necessary.

Risk in survival analysis is characterized by the conditional distribution of the event
time given a patient’s healthcare records. What distinguishes survival analysis from tra-
ditional regression problems is that event times can be censored, i.e., only known to lie
within a certain range. For example, patients may remain healthy throughout a 10-year
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coronary artery disease study (Wilson et al., 1998) so it is only known that such patients
survive at least 10 years. Discarding censored times may introduce bias into estimates by
underestimating the time until an event, because later times are more likely to be censored
and thus thrown away.

Likelihood-based methods are used to estimate survival models (Kalbfleisch and Pren-
tice, 2011). In addition to the usual mass or density computed in maximum likelihood
problems, the survival likelihood for censored data includes the survival function, i.e., one
minus the cumulative distribution function (CDF) of the distribution. For many distribu-
tions, CDF evaluations require explicitly integrating the density. Recent advances in deep
learning provide opportunities for flexible survival modeling (LeCun et al., 2015; Ranganath
et al., 2016). However, flexible distributions utilizing deep learning, such as those modeled
by GANs (Goodfellow et al., 2014; Chapfuwa et al., 2018), may not yield efficient CDF
computation.

Traditional survival analysis techniques make distributional assumptions, e.g. log-
normal density or proportional hazards, to keep estimation tractable (Kalbfleisch and Pren-
tice, 2011; Cox, 1972). But this limits the flexibility of the model. To move beyond this,
discrete time models divide continuous times into a sequence of bins (Miscouridou et al.,
2018; Lee et al., 2018; Kvamme and Borgan, 2019) and can approximate arbitrary con-
tinuous distributions increasing well as the number of bins increases. However, the choice
of bin boundaries is troublesome: it is unclear how best to set the time intervals for each
bin, and the survival function for times within a bin is ill-defined. ODE-based continuous
time models (Tang et al., 2020, 2022) specify the time-to-event distribution through ODEs.
However, the training of ODE-based models is slow due to expensive numerical integration
requiring many neural network evaluations for each forward pass (Kelly et al., 2020).

In this work, we propose Survival Mixture Density Networks (Survival MDN). Survival
MDN builds off mixture density networks (Bishop, 1994) to allow flexible modeling. Since
the time is positive in survival modeling, we apply an invertible positive function to the
samples from MDNs. The CDF of Survival MDNs can be obtained easily through the
evaluation of the CDF of the mixture components of the MDN, which is simple for mix-
ture components like Gaussians. We evaluate Survival MDN and baselines on four clinical
datasets: SUPPORT, METABRIC, GBSG, and MIMIC. On all datasets, Survival MDN
performs better than, or as well as, the baselines on concordance, integrated Brier Score
and integrated binomial log-likelihood. We also show that training Survival MDNs can be
100 times faster than the ODE-based model SODEN (Tang et al., 2020).1

Generalizable Insights about Machine Learning in the Context of Healthcare

The majority of flexible survival modeling relies on training with the Cox partial likelihood,
discrete time modeling, or ordinary differential equations. Training with partial likelihood
disables the stochastic gradient descent algorithm and is not scalable for large datasets.
Discrete time models have issues with choosing bin boundaries and determining the survival
probability for a particular time. ODE-based models use likelihood for training but are slow
to train. Our proposed model Survival MDN have several advantages 1) It is a continuous
time model 2) It makes fewer distributional assumptions 3) It can be trained with stochastic

1. The code is available at https://github.com/XintianHan/Survival-MDN
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gradient descent 4) It is easier to use than discrete models and faster than ODE-based
models.

2. Background

In this section, we introduce the mathematical foundation of survival analysis and summa-
rize related works. We then describe how our work is distinguished from previous works.

2.1. Foundation of Survival Analysis

Survival analysis studies the distribution of event time T given covariates X. For example,
we would like to know when a patient may die after the admission to ICU. The event
time is called the failure time or survival time. We consider the common scenario of right-
censoring in this work, where only a lower bound of the survival time is observed for some of
the patients. We call the lower bound the censored time C. When T > C, only the censored
time C is observed; when T ≤ C,the failure time T is observed. We use ∆ = I{T ≤ C}
to indicate whether the event time is observed and U = min{T,C} to denote the observed
time.

A central quantity that appears in the estimation and use of survival models is the
survival function S(t|X) = P (T > t|X), i.e., the probability a patient with covariates X
will survival until time t. By definition, S(t|X) = 1− CDF(t|X).

Assume we observe i.i.d. datapoints {ui,∆i, xi}Ni=1 and censoring is random T ⊥ C|X.
Under these assumptions, and with p(t|X) denotating the mass or probability density func-
tion (PDF) evaluated at t, the survival likelihood function with a parameter θ is proportional
to (Kalbfleisch and Prentice, 2011):

ΠN
i=1pθ(ui|xi)∆iSθ(ui|xi)1−∆i .

In this work, we use the log-likelihood as a training objective function.

2.2. Related Work

Traditional Survival Analysis Traditionally, survival analysis makes distributional as-
sumptions. The Cox model (Cox, 1972) makes the proportional hazard assumption. The
accelerated failure time (AFT) model (Buckley and James, 1979; Wei, 1992) assumes that
log(T ) = XT θ+ ϵ, where ϵ is a log-logistic distribution. Multiple variants of Cox and AFT
models (Aalen, 1980; Bennett, 1983; Cheng et al., 1995; Lin and Ying, 1995; Kalbfleisch
and Prentice, 2011; Wu and Witten, 2019) have been proposed to introduce time-varying
functions or different distributions. However, these extensions only use linear or simple non-
linear models which may not be flexible enough to model the complex data distribution.
Avati et al. (2020) use deep networks to produce the parameters of a lognormal. Though
this can capture nonlinear dependence of the lognormal’s parameters on the input, the log-
normal assumption may not be appropriate, e.g., if the true distribution has more than one
mode.
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Deep Cox Models The Cox model has been extended with deep networks in several
ways. DeepSurv (Katzman et al., 2018) uses a neural network to model the relative risk
g(X; θ). Cox-Time (Kvamme et al., 2019) further allows the relative risk to depend on time
t. Kvamme and Borgan (2019) assume the hazard is constant in predefined time intervals.
Nagpal et al. (2021) uses a mixture of Cox models parameterized by neural networks. These
models optimize the partial likelihood function which does not require the access to survival
functions. The partial likelihood is defined by

Πi:∆i=1
exp(g(ui, xi; θ))∑

j∈Ri
exp(g(ui, xj ; θ))

,

where Ri = {j : yj ≥ yi} denotes the set of patients who survive longer than the i-th
patient. The goal of maximizing the partial likelihood is to make the patient i’s relative
risk at ui greater than the other patients who survive longer. However, this requires the
whole dataset to evaluate since the risk set involves all the patients. This disadvantage
disables the stochastic gradient descent algorithm for training. Though we can use the
mini-batches of patients to approximate the risk set Ri, there are no theoretical guarantees
for convergence. When there are thousands of datapoints, stochastic gradient descent is
more efficient than gradient descent.

Deep Discrete Models Deep categorical survival models (Miscouridou et al., 2018;
Fotso, 2018; Goldstein et al., 2020) divide the time axis into a sequence of bins and turn
survival analysis into predicting a time’s bin. The models use K bins where the last bin
includes all times greater than some value. DeepHit (Lee et al., 2018) adds a rank-based
loss and uses discrete models for competing risks. Nnet-survival (Biganzoli et al., 1998;
Gensheimer and Narasimhan, 2019) models the survival function by multiplications of con-
ditional probabilities in previous time intervals. These discrete models can approximate
arbitrary smooth distributions with increasing fidelty as K increases (Miscouridou et al.,
2018).

However, discrete models have their own problems. These models do not define what
happens to the survival function estimation within a bin, at least without additional as-
sumptions e.g. linearly interpolating the CDF. Next, it is challenging to choose the bin
boundaries. It is unclear whether to set bin boundaries by population percentiles or by
regular intervals (Kvamme and Borgan, 2019; Tang et al., 2020; Craig et al., 2021). Using
regular intervals may lead times to concentrate into a small subset of bins. For percentiles,
it is unclear whether we should include the censored times into the population. Percentiles
of the observed failure times may not equal the percentiles of true failure times. Finally,
deep discrete models are based on classification architectures, meaning that they may be
overconfident and suffer the same poor calibration observed for classifiers in (Guo et al.,
2017).

ODE-based Models Recently, continuous time models with neural ODEs (Chen et al.,
2018) have been proposed. SODEN (Tang et al., 2020) considers the evolution of cumulative
hazard functions as an ODE while Danks and Yau (2022) model the CDF by an ODE.
Groha et al. (2020) use the ODE for multi-state survival analysis. ODE-based models have
tractable PDF’s and CDF’s. However, training neural ODEs is slow (Kelly et al., 2020)
because of the expensive numerical integration inside ODE solvers. ODE-based models
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also require extra hyperparameters related to ODE-solvers, including the solver type, and
tolerance level.

Other Deep Models Chapfuwa et al. (2018) use GANs for survival distribution mod-
eling. But they do not use the likelihood as an objective for training since the PDF and
CDF of a GAN model are intractable. Minimax training of GANs is known to be unsta-
ble (Kodali et al., 2017; Bottou et al., 2018). Ranganath et al. (2016) use deep exponential
families (Ranganath et al., 2015) with Weibull likelihoods. This approach necessitated the
use of black-box variational inference with Monte Carlo gradients (Ranganath et al., 2014;
Mohamed et al., 2020), which typically yields both a lower bound on the likelihood and
noisier, slower optimizations. Survival stacking (Craig et al., 2021) casts the survival anal-
ysis as a classification task by predicting whether one patient is in other patients’ risk sets.
But for N datapoints, survival stacking creates O(N2) classification problems which is not
tractable for large datasets.

Our Model In this work, we propose a new flexible survival model named Survival Mix-
ture Density Networks. Survival MDNs utilize mixture density networks (Bishop, 1994) to
allow flexible modeling. With Gaussians as the base distributions, computing CDF and
PDF of the model requires the evaluation of standard functions and the error function.
The error function can be obtained efficiently via some approximations (Abramowitz et al.,
1988). Our simple approach can be trained through stochastic gradient descent and much
faster than the ODE-based models. We compare our model with the previous approaches
in table 1.

Model Flexible Continuous-time SGD Without ODE-Solver

Cox ✗ ✓ ✗ ✓

DeepSurv ✗ ✓ ✗ ✓

DeepHit ✓ ✗ ✓ ✓

Nnet-survival ✓ ✗ ✓ ✓

Cox-Time ✓ ✓ ✗ ✓

SODEN ✓ ✓ ✓ ✗

Survival MDN ✓ ✓ ✓ ✓

Table 1: Comparison of Different Models

In summary, we propose a continuous-time model that can be trained with stochas-
tic gradients, without numerical ODE solving, and that moves beyond common modeling
restrictions (e.g. that the density is log-normal or Cox).

3. Survival Mixture Density Networks

Our purpose is to build a survival model that has the following properties:

1. It has a differentiable PDF which can be evaluated efficiently.

2. It has a differentiable CDF which can be evaluated efficiently.

5



Survival MDN

3. It is flexible enough to approximate a wide class of conditional time-to-event distri-
butions p(t|x) with support over R+.

The first two properties enable efficient training using maximum likelihood and using
stochastic gradients. Examples of the last property are models that do not make assump-
tions like lognormality or proportional hazards.

3.1. Mixture Density Networks

Mixture Density Networks (MDNs) (Bishop, 1994) form the key part of Survival MDN.
For a given x, MDNs model the conditional distribution p(y|x) by mapping x through a
neural network to produce the weights and parameters of a mixture model. Mixture density
networks are flexible approximators. For any given x, with enough components, MDNs can
approximate any conditional density p(y|x) as closely as desired (Bishop, 1994).

In this work, we use Gaussian mixtures (Reynolds et al., 2000; Reynolds, 2009). A
discussion on different base distributions can be found in appendix C. Assume we have K
components with weights {wi}Ki=1, means {µi}Ki=1 and standard deviations {σi}Ki=1 such that∑K

i=1wi = 1. The PDF of the Gaussian Mixture Density Network is given by

p
(
y|{wi, µi, σi}Ki=1

)
=

K∑
i=1

wiN
(
y|µi, σ

2
i

)
,

where we denote N (y|µi, σ
2
i ) as the density of a Gaussian distributed random variable with

mean µi and variance σ2
i .

In mixture density networks, we build the conditional distribution by mapping the
covariates x to parameters of the Gaussian Mixture Model through deep neural networks:

{wi(x), µi(x), σi(x)}Ki=1 = fθ(x),

where fθ is a trainable neural network with parameters θ.

3.2. Survival Mixture Density Networks

We propose Survival Mixture Density Networks (Survival MDN) to satisfy the properties
we want for a survival model.

The sampling process for Survival MDN on a given input x is

1. Calculate {wi(x), µi(x), σi(x)}Ki=1 = fθ(x).

2. Sample y according to the PDF
∑K

i=1wiN
(
y|µi, σ

2
i

)
. To do so, first sample a com-

ponent i with probability equal to wi and then sample from N (µi, σ
2
i ).

3. Map y to the event t using t = g(y) = log(1 + exp(y)).

The invertible softplus function g(y) = log(1+exp(y)) maps the sample from the mixture
density network to the positive domain. Another common choice to map the input from R
to R+ is exp. We choose softplus over exp for the reason that exp may place high density
on very large times.
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Next, we show that the PDF and CDF of the Survival MDN is easy to compute. By
the change of variables, the Survival MDN PDF at time t for input x is:

p(t|x) =
∣∣∣dg−1(t)

dt

∣∣∣( K∑
i=1

wi(x)N
(
g−1(t)|µi(x), σ

2
i (x)

) )
.

For the simple choice of the softplus, the absolute value term does not depend on the
parameters of neural network fθ so this term does not contribute to the log-likelihood
training. The Survival MDN CDF at time t can be computed easily as well. Denote
F (·|µi, σ

2
i ) as the CDF of the i-th component in a Gaussian mixture models. Denote F (t|x)

as the CDF of the Survival MDN and FMDN(y|x) as the CDF of the underlying MDN. Since
softplus is an increasing invertible function, we show that the CDF of the Survival MDN
at time t only requires evaluations of the underlying Gaussian CDFs:

F (t|x) = FMDN(g
−1(t)|x)

=

∫ g−1(t)

−∞

K∑
i=1

wi(x)N
(
y|µi(x), σ

2
i (x)

)
dy

=
K∑
i=1

wi(x)

∫ g−1(t)

−∞
N

(
y|µi(x), σ

2
i (x)

)
dy

=
K∑
i=1

wi(x)F
(
g−1(t)|µi(x), σ

2
i (x)

)

The evaluation of Gaussian CDF’s can be done efficiently through the error function erf(·)
which is the CDF of the standard normal distribution:

F
(
g−1(t)|µi(x), σ

2
i (x)

)
= erf

((
g−1(t)− µi(x)

)
/σi(x)

)
.

The erf function can be computed efficiently via common approximations (Abramowitz
et al., 1988). Now we have satisfied the first two desired properties (PDF and CDF).
The last property, flexibility, follows since the Survival MDN maps time-to-event densities
to densities over the reals via y = g−1(t) and a mixture density network with enough
components can approximate any smooth density p(y|x) as closely as desired (Bishop, 1994).

4. Simulation Study

In this simulation experiment, we test Survival MDN and SODEN on a dataset that the
proportional hazard assumption does not hold. We follow the simple simulation setting in
SODEN (Tang et al., 2020). There are two group of x’s, x = 0 and x = 1. And the ground
truth survival function is:

S(t|x) = exp(−2t) · I{x = 0}+ exp(−2t2) · I{x = 1},
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Figure 1: The survival functions of two groups. We show the survival function of two
trained model SODEN and Survival MDN together with the ground truth on x = 0 and
x = 1 separately. For x = 0, three survival functions are so close to each other that the
green curve for SODEN is covered by the blue curve for Survival MDN and the gray curve
for the ground truth.

where I is the indicator function. This survival distribution does not obey the proportional
hazard assumption. Therefore, models that require PH assumption could not fit this dataset
well. We generate x from a Bernoulli distribution with probability 0.5 and then we generate
t using the inverse CDF method. Then we sample the censored time uniformly from [0, 2].
Instead of simulating a fixed dataset, we use an “online” training method. In each iteration,
we generate a new set of 1024 datapoints. We use the likelihood function for training. We
train 10,000 iterations for both SODEN and Survival MDN.

We show the resulting survival functions and ground truth in fig. 1. Both Survival MDN
and SODEN’s survival functions are close to the ground truth at both x = 0 and x = 1.

5. Real World Experiments

In this section, we compare Survival MDN with baselines Cox, DeepSurv, Cox-Time, Nnet-
survival, DeepHit and SODEN. We use four different datasets: SUPPORT, METABRIC,
GBSG and MIMIC. We evaluate all models on three different metrics: concordance, inte-
grated binomial log-likelihood and integrated brier score.

5.1. Datasets

We choose four different datasets: SUPPORT, METABRIC, GBSG and MIMIC. SUP-
PORT, METABRIC and GBSG are commonly used datasets for survival analysis, which
can be found in pycox package. MIMIC is a dataset we preprocessed from MIMIC-iv (John-
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son et al., 2020) in PhysioNet (Goldberger et al., 2000). We describe the details of the
datasets here:

• SUPPORT: the Study to Understand Prognoses Preferences Outcomes and Risks of
Treatment. It has 14 features. There are 8,873 datapoints, 32% of which are censored.
We use the train/valid/test splits from SODEN (Tang et al., 2020)2.

• METABRIC: the Molecular Taxonomy of Breast Cancer International Consortium.
It has 9 features. There are 1,904 datapoints, 42% of which are censored. We use the
train/valid/test splits from the SODEN repository.

• GBSG: The Rotterdam & German Breast Cancer Study Group. It has 7 features.
There are 2,232 datapoints, 43% of which are censored.

• MIMIC: The Medical Information Mart for Intensive Care. The SODEN repository
does not provide the data files for MIMIC. We choose patients that are alive 24 hours
after admission to ICU. We define the event as mortality after admission. We define
the censored time as the ICU discharged time. We collect time series features within
the 24-hour window after the admission together with the static features. For time
series features, we use the minimum, mean and maximum within the window. We
remove the features that are missing more than half of the datapoints. Finally, we
extract 65 features after preprocessing including common labs and vitals. There are
53,612 datapoints, 82% of which are censored. The SQL code that preprocesses the
data from MIMIC-iv is attached in appendix A.

5.2. Baselines

We consider baseline models:

• Cox (Cox, 1972): A linear model with the proportional hazards assumption.

• DeepSurv (Katzman et al., 2018): A deep learning model with the linear function in
Cox replaced by neural networks.

• Cox-Time (Katzman et al., 2018): A continuous time model that allows the relative
risk in Cox to depend on time.

• Nnet-Survival (Gensheimer and Narasimhan, 2019): A discrete time model that mod-
els the conditional hazard in each time interval.

• DeepHit (Lee et al., 2018): A deep discrete time model that further adds a rank-based
loss to the likelihood as the training objective.

• SODEN (Tang et al., 2020): An ODE-based continous time model.

For Cox, we use the implementation in the Python package lifelines. For DeepSurv,
Cox-Time, Nnet-Survival and DeepHit, we use the implementations in the Python package
pycox. For SODEN, we use the implementation from the SODEN repository.

2. Available at https://github.com/jiaqima/SODEN
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P (C > τ) Model Ctd
τ (↑) IBLLτ (↑) IBSτ (↓)

10−8 Cox 0.596 ± .002 -0.568 ± .001 0.194 ± .001
DeepSurv 0.609 ± .003 -0.559 ± .002 0.190 ± .001
Cox-Time 0.607 ± .004 0.565 ± .002 0.191 ± .001

Nnet-Survival 0.624 ± .003 -0.570 ± .004 0.193 ± .001
DeepHit 0.631 ± .003 -0.583 ± .006 0.197 ± .001
SODEN 0.627 ± .003 -0.563 ± .002 0.191 ± .001

Survival MDN 0.628 ± .003 -0.559 ± .002 0.190 ± .002

0.2 Cox 0.596 ± .002 -0.585 ± .001 0.201 ± .000
DeepSurv 0.609 ± .003 -0.577 ± .002 0.197 ± .001
Cox-Time 0.606 ± .004 -0.583 ± .002 0.199 ± .001

Nnet-Survival 0.623 ± .003 -0.586 ± .003 0.201 ± .001
DeepHit 0.630 ± .003 -0.601 ± .006 0.205 ± .002
SODEN 0.630 ± .003 -0.601 ± .006 0.205 ± .002

Survival MDN 0.628 ± .003 -0.575± .002 0.196 ± .001

0.4 Cox 0.595 ± .002 -0.602 ± .001 0.208 ± .001
DeepSurv 0.608 ± .002 -0.595 ± .002 0.205 ± .001
Cox-Time 0.605 ± .004 -0.601 ± .002 0.207 ± .001

Nnet-Survival 0.623 ± .003 -0.602 ± .003 0.208 ± .001
DeepHit 0.630 ± .003 -0.619 ± .007 0.212 ± .002
SODEN 0.626 ± .003 -0.597 ± .002 0.205 ± .001

Survival MDN 0.628 ± .003 -0.593 ± .001 0.204 ± .001

Table 2: Evaluation of all models on SUPPORT with concordance (Ctd
τ ), integrated bino-

mial log-likelihood (IBLLτ ) and integrated Brier score (IBSτ ). The bold number indicates
the best performance. We report the mean and the standard error of the mean on all the
metrics (mean ± standard error).

5.3. Evaluation Metrics

We use the same evaluation metrics as SODEN (Tang et al., 2020). They are concordance,
integrated binomial log-likelihood and Brier score. The implementations can be found in
the SODEN repository. We briefly describe the three metrics here and refer more detailed
descriptions to Tang et al. (2020).

Concordance The concordance index is originally proposed by Harrell Jr et al. (1984).
It measures the probability that the relative order of the event time of two observations
matches the predicted survival probabilities. Antolini et al. (2005) further relaxes the pro-
portional hazard assumption in Harrell’s concordance to create time dependent concordance.
Building off the inverse-weighting method in Cheng et al. (1995), Uno et al. (2011) intro-
duces inverse probability weighted concordance to remove the dependence on the censoring
distribution. They use the survival distribution of the censoring time G(t) = P (C > t)
as the weight and the Kaplan-Meier estimator for G(t). Under the completely random
censoring assumption C |= (T,X), the inverse probability weighted estimator is consistent.
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P (C > τ) Model Ctd
τ (↑) IBLLτ (↑) IBSτ (↓)

10−8 Cox 0.644 ± .006 -0.508 ± .009 0.169 ± .002
DeepSurv 0.635 ± .007 -0.517 ± .011 0.171 ± .003
Cox-Time 0.648 ± .007 -0.511 ± .009 0.172 ± .003

Nnet-Survival 0.666 ± .005 -0.510 ± .007 0.171 ± .002
DeepHit 0.674 ± .006 -0.514 ± .004 0.174 ± .002
SODEN 0.661 ± .005 -0.498 ± .008 0.167 ± .003

Survival MDN 0.667 ± .004 -0.489 ± .005 0.165 ± .002

0.2 Cox 0.639 ± .006 -0.521 ± .006 0.176 ± .002
DeepSurv 0.635 ± .006 -0.530 ± .005 0.179 ± .002
Cox-Time 0.647 ± .005 -0.531 ± .007 0.179 ± .002

Nnet-Survival 0.662 ± .004 -0.523 ± .003 0.177 ± .001
DeepHit 0.671 ± .004 -0.533 ± .003 0.182 ± .001
SODEN 0.659 ± .003 -0.516 ± .006 0.174 ± .002

Survival MDN 0.662 ± .004 -0.510 ± .003 0.172 ± .001

0.4 Cox 0.637± .006 -0.521 ± .006 0.175 ± .002
DeepSurv 0.635 ± .006 -0.526 ± .005 0.178 ± .002
Cox-Time 0.644 ± .005 -0.526 ± .006 0.178 ± .002

Nnet-Survival 0.660 ± .003 -0.519 ± .003 0.176 ± .001
DeepHit 0.668 ± .003 -0.528 ± .003 0.180 ± .001
SODEN 0.658 ± .004 -0.528 ± .003 0.180 ± .001

Survival MDN 0.660 ± .002 -0.508 ± .003 0.172 ± .001

Table 3: Evaluation of all models on METABRIC with concordance (Ctd
τ ), integrated

binomial log-likelihood (IBLLτ ) and integrated Brier score (IBSτ ). We report truncated
metrics for τ ’s satisfying P (C > τ) = 10−8, 0.2, 0.4. The bold number indicates the best
performance. We report the mean and the standard error of the mean on all the metrics
(mean ± standard error).

This assumption is routinely made for evaluation, e.g. in Kvamme et al. (2019); Tang et al.
(2020); Han et al. (2021). Due to the limited number of observations, the estimator of the
inverse weight 1/Ĝ(t) may be very large for some large-enough t. So Uno et al. (2011) intro-
duce a truncated version of the concordance estimator within a pre-specified time interval
[0, τ ]:

Ctd
τ =

∑
i:∆i=1,ui<τ

∑
j,ui<uj

I
(
Ŝ(ui|xi) < Ŝ(ui|xj)

)
/Ĝ2(ui)∑

i:∆i=1,ui<τ

∑
j:ui<uj

1/Ĝ2(ui)
,

where I(·) is the indicator function. Here τ is used to truncate the large times that have
very small Ĝ(t). We choose three τ ’s that satisfy Ĝ(τ) = 10−8, 0.2, 0.4. When τ = 10−8,
the truncated concordance is almost equal to the non-truncated version.

Integrated Brier Score The Brier score (BS) measures the mean square error between
the ground-truth label and the predicted probability for a binary classifier. It measures
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both the calibration and discriminative performance. In survival analysis, we evaluate the
Brier score at a given time t. The label is whether the patient can survive after time t and
the predicted probability is the survival function. We also consider an inverse probability
weighted estimator (Graf et al., 1999; Gerds and Schumacher, 2006) for the Brier score at
time t

BS(t) =
1

N

N∑
i=1

{
Ŝ2(t|xi)I(ui ≤ t,∆i = 1)

Ĝ(ui)
+

(1− Ŝ(t|ui))2I(ui > t)

Ĝ(t)

}
,

where I(·) is the indicator function. To consider all times, we use an integrated BS (IBS)
over a time interval [0, τ ]:

IBSτ =
1

τ

∫ τ

0
BS(t)dt.

To avoid extreme inverse weights, we also report results for τ ’s that satisfy Ĝ(τ) = 10−8, 0.2, 0.4.
When Ĝ(τ) = 10−8, τ is almost equal to the maximum time in the data.

Integrated Binomial Log-Likelihood Another common metric for survival analysis
is the integrated binomial log-likelihood(IBLL). Different from IBS, IBLL uses binomial
log-likelihood at each time step t

BLL(t) =
1

N

N∑
i=1

{
log(1− Ŝ(t|xi)I(ui ≤ t,∆i = 1)

Ĝ(ui)
+

log(Ŝ(t|xi)I(ui > t)

Ĝ(t)

}
,

where I(·) is the indicator function. And IBLL is defined by

IBLLτ =
1

τ

∫ τ

0
BLL(t)dt.

We also report results for τ ’s satisfying Ĝ(τ) = 10−8, 0.2, 0.4.

5.4. Experimental Setup

We randomly split datasets into training, validation, and testing sets. We use the validation
set to choose the best epoch from training and hyperparameters and report the results on
the test set. For SUPPORT/METABRIC/GBSG, we use 10 splits (8 for training, 1 for
validation and 1 for test). For MIMIC, we use 5 splits (3 for training, 1 for validation,
and 1 for test) since the size of MIMIC is a bit large. We use random search to create 100
independent trials for different hyperparameters. We use the optimizer RMSProp (Tieleman
et al., 2012).

For Survival MDN, following Sudarshan et al. (2020), we use a three-layer neural network
that maps the features to a latent representation, and then from the latent representation
we use three linear layers to output w’s, µ’s, σ’s separately. We use a softmax layer to
make sure that the sum of w’s equals one and use an exp function to ensure the standard
deviations σ’s are positive. We vary the number of components from 5 to 20.

For other models, we vary the number of layers. Other hyperparameters include the
hidden sizes, learning rate, batch normalization, momentum, dropout, and batch size. For
DeepHit and Nnet-Survival, we vary the number of time intervals in addition. For other
hyperparameters, we use the same tuning ranges as in (Tang et al., 2020). We show the
tuning ranges in appendix B.
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P (C > τ) Model Ctd
τ (↑) IBLLτ (↑) IBSτ (↓)

10−8 Cox 0.645 ± .009 -0.523 ± .009 0.177 ± .004
DeepSurv 0.663 ± .007 -0.509 ± .010 0.172 ± .004
Cox-Time 0.654 ± .007 -0.521 ± .009 0.176 ± .003

Nnet-Survival 0.661 ± .006 -0.516 ± .008 0.174 ± .005
DeepHit 0.665 ± .008 -0.504 ± .017 0.176 ± .005
SODEN 0.661 ± .012 -0.514 ± .017 0.173 ± .004

Survival MDN 0.668 ± .007 -0.504 ± .006 0.172 ± .003

0.2 Cox 0.645 ± .009 -0.519 ± .007 0.176 ± .003
DeepSurv 0.663 ± .007 -0.505 ± .008 0.170 ± .002
Cox-Time 0.654 ± .007 -0.517 ± .006 0.175 ± .002

Nnet-Survival 0.661 ± .006 -0.509 ± .006 0.170 ± .003
DeepHit 0.665 ± .008 -0.510 ± .008 0.172 ± .004
SODEN 0.661 ± .012 -0.510 ± .009 0.172 ± .004

Survival MDN 0.668 ± .007 -0.501 ± .006 0.168 ± .002

0.4 Cox 0.645± .009 -0.519 ± .007 0.176 ± .003
DeepSurv 0.663± .007 -0.505 ± .008 0.170 ± .002
Cox-Time 0.654 ± .007 -0.517 ± .006 0.175 ± .002

Nnet-Survival 0.661 ± .006 -0.509 ± .007 0.170 ± .003
DeepHit 0.665 ± .008 -0.510 ± .008 0.172 ± .004
SODEN 0.661 ± .012 -0.510 ± .009 0.172 ± .004

Survival MDN 0.668 ± .007 -0.500 ± .006 0.168 ± .002

Table 4: Evaluation of all models on GBSG with concordance (Ctd
τ ), integrated binomial

log-likelihood (IBLLτ ) and integrated Brier score (IBSτ ). We report truncated metrics for
τ ’s satisfying P (C > τ) = 10−8, 0.2, 0.4. The bold number indicates the best performance.
We report the mean and the standard error of the mean on all the metrics (mean ± standard
error).

5.5. Results

We report the results on four datasets in table 2 (SUPPORT), table 3 (METABRIC), table 4
(GBSG), and table 5 (MIMIC). For SUPPORT and METABRIC, we use the exact same
splits as the SODEN repository so we use their results for the baselines.

For concordance, DeepHit have the best concordance on SUPPORT and METABRIC
while the continuous time model Survival MDN have the best ones on GBSG and MIMIC.
For IBLL and IBS, Survival MDN has the best performance across all datasets. The IBLL
and IBS care more about the exact survival probability prediction at each time. The dis-
crete time model DeepHit may not give an accurate estimation for survival probability for
a particular time since it does not distinguish the times inside one time interval. The dis-
crete time models also have trouble for choosing the bin boundaries (Kvamme and Borgan,
2019; Tang et al., 2020; Craig et al., 2021). Their concordance on MIMIC is worse than
SODEN and Survival MDN. Continuous time models Survival MDN and SODEN have sim-
ilar performance on concordance on four datasets since they are both flexible continuous
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time models. There is little difference among Ĝ(τ) = 10−8, 0.2, 0.4 for the concordance,
IBLL and IBS on small datasets SUPPORT, METABRIC and GBSG, which is the same
observation in SODEN (Tang et al., 2020).

P (C > τ) Model Ctd
τ (↑) IBLLτ (↑) IBSτ (↓)

10−8 Cox 0.642 ± .002 -0.211 ± .001 0.061 ± .001
DeepSurv 0.663 ± .001 -0.212 ± .003 0.061 ± .001
Cox-Time 0.653 ± .001 -0.210 ± .003 0.061 ± .001

Nnet-Survival 0.649 ± .002 -0.206 ± .000 0.061 ± .001
DeepHit 0.647 ± .002 -0.206 ± .001 0.061 ± .001
SODEN 0.659 ± .002 -0.204 ± .002 0.060 ± .001

Survival MDN 0.660 ± .002 -0.204 ± .002 0.059 ± .001

0.2 Cox 0.711 ± .004 -0.473 ± .133 0.091 ± .014
DeepSurv 0.734 ± .003 -0.462 ± .150 0.089 ± .015
Cox-Time 0.726 ± .002 -0.443 ± .126 0.061 ± .001

Nnet-Survival 0.722 ± .004 -0.229 ± .004 0.066 ± .001
DeepHit 0.719 ± .004 -0.233 ± .004 0.066 ± .001
SODEN 0.733 ± .002 -0.229 ± .004 0.065 ± .001

Survival MDN 0.736 ± .003 -0.228 ± .004 0.065 ± .001

0.4 Cox 0.780 ± .002 -0.588 ± .136 0.071 ± .031
DeepSurv 0.797 ± .001 -0.423 ± .202 0.045 ± .018
Cox-Time 0.790 ± .002 -0.501 ± .267 0.037 ± .010

Nnet-Survival 0.784 ± .003 -0.082 ± .003 0.018 ± .001
DeepHit 0.787 ± .003 -0.083 ± .002 0.019 ± .001
SODEN 0.805 ± .005 -0.084 ± .002 0.019 ± .001

Survival MDN 0.805 ± .001 -0.078 ± .002 0.018 ± .001

Table 5: Evaluation of all models on MIMIC with concordance (Ctd
τ ), integrated binomial

log-likelihood (IBLLτ ) and integrated Brier score (IBSτ ). We report truncated metrics for
τ ’s satisfying P (C > τ) = 10−8, 0.2, 0.4. The bold number indicates the best performance.
We report the mean and the standard error of the mean on all the metrics (mean ± standard
error).

The training time of SODEN is much longer than Survival MDN. We collect the training
time of two models with the same hidden size 32 and number of layers 4 on METABRIC.
We use the maximum number of components in the tuning range 20 for Survival MDN.
We show the test concordance versus the training time for Survival MDN and SODEN on
GeForce RTX 2080 Ti in fig. 2. We can see that Survival MDN reached the peak of the
test concordance much faster than SODEN. On average, each epoch of Survival MDN costs
0.20 seconds while each epoch of SODEN costs 23.82 seconds. Training Survival MDN is
more than 100 time faster than SODEN.
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Figure 2: Comparison between Survival MDN and SODEN on IPW Concordance versus
training time. The time is shown in log scale.

6. Discussion

We propose Survival MDN, a simple flexible continuous time survival modeling. Survival
modeling plays an important role in risk estimation and clinical decision making. The
proposed model can speed up the training and evaluation of survival modeling which may
also accelerate the clinical decision process.

In this work, we combine two simple yet elegant tools—mixture densities and change
of variables—to produce flexible survival models. While recent approaches achieve similar
flexibility, it is avchieved at the expense of training time, complexity, and inconvenient
hyper-parameters. Without introducing such complexity, Survival MDNs achieve better or
similar performance.

Limitations Currently, the proposed model survival MDN only considers Gaussian Mix-
tures. Though Gaussian Mixtures have a universal approximation power, a combination
of different base distributions, e.g. generalized logistics, in mixture density networks may
improve the performance. Regarding experimental evaluation, the marginal censoring as-
sumption used in the reweighting estimators is common practice in the literature, but may
not be appropriate. Evaluation with censored data is impossible without assumptions, but
it could be possible to improve evaluation by making conditional censoring assumptions.
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Appendix A. MIMIC SQL code

select

-- ids

pat.subject_id as subject_id, adm.hadm_id as hadm_id,icu.stay_id as stay_id,

-- demographics

CASE WHEN pat.gender="M" THEN 1 ELSE 0 END as is_male,

CASE WHEN adm.ethnicity="WHITE" THEN 1 ELSE 0 END as is_white,

icu_detail.admission_age as age,

-- weight height

fdw.weight ,

fdh.height ,

-- LOS

icu.los as los_icu_days,

icu_detail.los_hospital as los_hosp_days,

-- death

--icu_detail.icu_intime as icu_intime,

--icu_detail.dod as dod,

TIMESTAMP_DIFF(icu_detail.dod, icu_detail.icu_intime, HOUR) / 24 as time_to_death,

case

when icu_detail.dod is null then 0

else 1

end

as death,

-- vitals labs min max mean

vitals.*,

labs.*,

sofa.*

from ‘physionet-data.mimic_core.patients‘ pat

inner join

‘physionet-data.mimic_core.admissions‘ adm

on pat.subject_id=adm.subject_id

inner join

‘physionet-data.mimic_icu.icustays‘ icu

on adm.subject_id=icu.subject_id

and

adm.hadm_id=icu.hadm_id

inner join

‘physionet-data.mimic_derived.first_day_height‘ fdh

on

adm.subject_id = fdh.subject_id and icu.stay_id = fdh.stay_id

inner join

‘physionet-data.mimic_derived.first_day_weight‘ fdw

on

adm.subject_id = fdw.subject_id and icu.stay_id = fdw.stay_id
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inner join

‘physionet-data.mimic_derived.icustay_detail‘ icu_detail

on

adm.subject_id=icu_detail.subject_id

and

adm.hadm_id=icu_detail.hadm_id

and

icu.stay_id=icu_detail.stay_id

inner join

‘physionet-data.mimic_derived.first_day_sofa‘ sofa

on

adm.subject_id=sofa.subject_id

and

adm.hadm_id=sofa.hadm_id

and

icu.stay_id=sofa.stay_id

inner join

‘physionet-data.mimic_derived.first_day_vitalsign‘ vitals

on

adm.subject_id=vitals.subject_id

and

icu.stay_id=vitals.stay_id

inner join

‘physionet-data.mimic_derived.first_day_lab‘ labs

on

adm.subject_id=labs.subject_id

and

icu.stay_id=labs.stay_id

where icu_detail.los_icu > 1

and pat.gender is not null

and adm.ethnicity is not null

and adm.ethnicity != "UNABLE TO OBTAIN"

and adm.ethnicity != "UNKNOWN"

Appendix B. Tuning Ranges of Hyperparameters

We show the search range of hyperparameters in table 6.
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Batch size {32, 64, 128, 256} for METABRIC, GBSG
{128, 256, 512} for SUPPORT

{512, 1024} for MIMIC
Number of layers {1, 2, 4}

Hidden size [22, 27]
Learning rate [10−4.5, 10−1.5]
Weight decay [10−9, 10−4]
Momentum [0.85, 0.99]
Dropout {0, 0.1, 0.5}

Batch normalization {True, False}
α (Surrogate ranking loss in DeepHit) [0, 1]
σ (Surrogate ranking loss in DeepHit) {0.25, 1, 5}

Number of intervals {10, 50, 100, 200, 400} for SUPPORT, METABRIC, GBSG
(DeepHit, Nnet-survival) {50, 100, 200, 400, 800} for MIMIC

Table 6: Tuning ranges of hyperparameters
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Appendix C. Discussion on Different Base Distributions

Here we compare Gaussian base with an altenative base, the generalized logistic distribu-
tion, on marginal data generations. We use the following form of the generalized logistic
distribution:

F (x;α) = 1− e−αx

(1 + e−x)α
.

We also shift the generalized logistic distribution using scale and location. In this generalized
logistic distribution, we have one more parameter α which can control the magnitude of the
power.

We consider three different marginal data generation cases:

• LogNormal distribution with µ = 0.1 and σ = 0.1. LogNormal distribution is a
common one researchers use in survival analysis. The variance is small in this data
generation distribution.

• Student T distribution with degree of freedom one and transformed to positive values
through softplus. Student T distribution has a heavy tail.

• Gamma distribution with shape 0.1 and scale 1. When shape is smaller than one, the
Gamma distribution put a lot of mass on values close to zero. This may be hard for
a mixture model to fit.

We sample the censored time uniformly from [0, 10]. We still use an online training
which generates a whole new batch data in every update step.

The results of fitting LogNormal data is shown in fig. 3. The Gaussian base has survival
functions overlapping with the ground truth but the generalized logistic base cannot fit it
well.

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

S(
t)

MDN
Logistic MDN
ground truth func

Figure 3: LogNormal Data.

The result of fitting student T data is shown in fig. 4. For heavy tailed student T,
both Gaussian base and generalized logistic base can also fit it well with survival functions
overlapping the ground truth.

The result of fitting Gamma data is shown in fig. 5. The generalized logistic base can fit
the Gamma data well while there is some gap between the ground truth and the Gaussian
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Figure 4: Student T + Softplus Data.

base survival function. In Gamma data with a small shape, the generalized logistic base is
a better choice.
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Figure 5: Student T + Softplus Data.
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