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Appendix: The Gradient of the ELBO

The key idea behind our algorithm is that the gradient
of the ELBO can be written as an expectation with
respect to the variational distribution. We start by
differentiating Eq. 1,

ViL = Y, / (log p(x.2) — logg(z1A)q (| A)d=

- [ Vil(log p(x.2) — log gz [A)a(z10)]dz
_ / Villog p(x. 2) — log g (|M)]g (2|4 d=

+ [ Vag(enog p(x.2) ~ logg G l))dz
= —E4[Vilogq(z|d)] (A1)
+ [ Vag(enog px.2) ~ logg 1)z
where we have exchanged derivatives with integrals

via the dominated convergence theorem! [Cinlar, 2011]
and used V,[log p(x,z)] = 0.

The first term in Eq. A.1 is zero. To see this, note

\Y) A
Eq[Valogg(z|A)] = E, [%} = [V)Lq(zM)dz

= V;L/q(zM)dz =V, 1=0.
(A.2)

To simplify the second term, first observe that
Vilg(z|A)] = Valloggq(z|A)]g(z|A). This fact gives us
the gradient as an expectation,

VL

/ Valg(z|V)](og p(x, z) —logq(z|A))dz

/ V3 log g(z|A)(log p(x. 2)
—logq(z|A))q(z|A)dz
= E4[Valogq(z|A)(log p(x,z) —logq(z|A))].

1The score function exists. The score and likelihoods
are bounded.

Unnormalized joint distributions In some situa-
tions it is easier to write down an unnormalized ver-
sion of the joint distribution. In this case, we can
replace p with its unnormalized version u in Eq. A.1
and still have a valid gradient. More formally, let
p(x,z) =u(x,z)/C, then our gradient becomes

ViL = Eq[Vilogq(z|A)(log p(x, 2) —log q(z|A))]
= Ey4[Vilogg(z|A)(logu(x, z) —log C —logq(z|A))]

= Eq[Vilogq(z|A)(logu(x, z) —log g(z|A))].
(A.3)

where the last equality follows from Eq. A.2.

Supplement

Derivation of the Rao-Blackwellized Gradient
To compute the Rao-Blackwellized estimators, we need
to compute conditional expectations. Due to the mean
field-assumption, the conditional expectation simplifies
due to the factorization

[ J(x.y)p(x)p(x)dy
[ p(x)p(y)dy

= / J(x, y)p(y)dy = Ey[J(x, y)].
(S.4)

E[J(X.Y)[X] =

Therefore, to construct a lower variance estimator when
the joint distribution factorizes, all we need to do is
integrate out some variables. In our problem this means
for each component of the gradient, we should compute
expectations with respect to the other factors. We
present the estimator in the full mean field family of
variational distributions, but note it applies to any
variational approximation with some factorization like
structured mean-field.

Thus, under the mean field assumption the Rao-
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Blackwellized estimator for the gradient becomes

n
ViL =Eg, ... Eq,[Y  Vilogq;(zj|A;)(log p(x.z)
j=1

— > logq;(z;|A)))]-

j=1

(S.5)

Recall the definitions from Section 3 where we defined
V,, L as the gradient of the ELBO with respect to A;,
pi as the components of the log joint that include terms
from the ith factor, and Eg,, as the expectation with
respect to the set of latent variables that appear in the
complete conditional for z;. Let p_; be the components
of the joint that does not include terms from the ith
factor respectively. We can write the gradient with
respect to the ith factor’s variational parameters as
Vi L

l

=E4, ...Eq,[Va,; loggi(zi|A;i)(log p(x, z)

— ) logq;j(z|A))]
j=1
=Eq, ... Eq,[Vy,; logqi(zi|A;)(og pi(x, z)
+log pi(x.2) = Y _logq;(z|A;))]
j=1
=E;[Vy, logqi(zi|Ai)(Eq_, [log pi(x, z(y)]
—log qi(zi|Ai) + Eq4_, [log p—i(x, z)
n
— Y logq;(z|A)]
J=Li#j
=E;[Vi, logqi(zi|Ai)(Eq_, [log pi(x, 2)]
—logqi(zi|Ai) + Ci)]
=E;; [V, logqi(zi|Ai)(Ey_; [log pi (x, z())]
—log g; (zi|Ai))]
=Eq;,[Va, logqi(zi|Ai)(og pi (x, zG)) — log gi(zi[Ai))],
(S.6)

where we have leveraged the mean field assumption and
made use of the identity for the expected score Eq. 14.
This means we can Rao-Blackwellize the gradient of
the variational parameter A; with respect to the latent
variables outside of the Markov blanket of z; without
needing model specific computations.

Derivation of Stochastic Inference in Hierarchi-
cal Bayesian Models Recall the definition of a hi-
erarchical Bayesian model with n observations given in
Eq. 12

logp(X1..n.21..n. B)

=log p(BIn) + Y _log p(zi|B) + log p(xi|zi. B).

i=1

Let the variational approximation for the posterior
distribution be from the mean field family. Let A be
the global variational parameter and let ¢, be the
local variational parameters. The variational family is

q(B.z1..0) = q(BIM) [ 9 (zilgo)-

i=1

(S.7)

Using the Rao Blackwellized estimator to compute
noisy gradients in this family for this model gives

S
Vil =é Y Vilogq(BsI1)(og p(Bs|n) —log g (Bs|2)

i=1

+ ) "(log p(zislBs) + log p(xilzis. Bs)))

i=1

S
A 1
Vo £ = Y Vo 1084 (is|9i) ((og p(zis|Bs)

i=1

+log p(xi|zis, Bs) — log q(zis|$i)))-

Unfortunately, this estimator requires iterating over
every data point to compute noisy realizations of the
gradient. We can mitigate this by subsampling obser-
vations. If we let i ~ Unif(l...n), then we can write
down a noisy gradient for the ELBO that does not need
to iterate over every observation; this noisy gradient is

. 13
il =g Y Vilogq(Bs|)(log p(Bs|n) —log ¢ (Bs|2)

i=1

+ n(log p(zis| Bs) + log p(xizis. Bs)))
. 13
Vo £ =3 D Vo 1084 (is|9n) (n(10g p(is| )
i=1

+ log p(xil|zis, Bs) —log q(zisl¢i)))
ﬁ(ﬁjﬁ =0 for all j #i.

The expected value of this estimator with respect to
the samples from the variational distribution and the
sampled data point is the gradient of the ELBO. This
means we can use it define a stochastic optimization
procedure to maximize the ELBO. We can lower the
variance of the above estimator by introducing con-
trol variates. For the dth dimension of the respective
parameters, the control variates are

Jaq(B.zi) =V, logq(BIA)(log p(BIn) —logq(B|A)
+ n(log p(zi|B) + log p(xi|zi. B)))
hy, (B) =Vi, logq(BIL)
Joiq(B.zi) =V, , logq(z|¢:i)(n(log p(z:|B)
+ log p(xil|zi, B) — log q(zil¢i)))

h¢id(zi) :V¢id log q(zi ;). (S.8)
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We can estimate the optimal scalings given by Eq. 8 for
the control variates using a small number of samples.
This gives the following lower variance noisy gradient
that does not need to iterate over all of the observations
at each update

. 1S
Vag£ =5 Vi, logq(Bs|A)log p(Bsln) —log g (Bs|A)

i=1
—aj, +n(log p(zis|Bs) + log p(xilzis. Bs)))
S

A 1 N
VoL =< 3 Vor, 1089 (Cisldi)(—ag,, +nllog p(zis|Bs)

i=1
+log p(xi|zis, Bs) —log q(zis|pi)))
Vg, £ =0 for all j # i, (S.9)

where a;, and ag; , are the respective control variate
scalings.

Gamma parameterization equivalence The

shape @ and rate B parameterization can be written in
terms of the mean u and variance o2 of the gamma as

a=—, pf=-=. (S5.10)
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