
Fall 2005-2006
Computational Complexity Exercise #4

Proposed Solution
By Rani Hod

1. We show that 2-SAT is co-NL-hard by reducing s-t-Con ∈ co-NL-complete to it. Let
(G, s, t) be a s-t-Con instance where G = (V,E); s, t ∈ V ; s 6= t. We regard V as variables
and output the following formula:

ϕ(G, s, t) = (s ∨ s) ∧ (¬t ∨ ¬t) ∧
∧

(u,v)∈E

(¬u ∨ v)

Let S ⊆ V be the set of vertices reachable from s in G and T ⊆ V be the set of vertices
reachable from t in GT .

Correctness:

(⇒) Consider ρ : V 7→ {true, false}, ρ(v) = true for v ∈ S and ρ(v) = false for v /∈ S. If
t is not reachable from s, then ρ satisfies ϕ(G, s, t) since s ∈ S, t ∈ T ⊆ V − S and no
edge (u, v) ∈ E has u ∈ S ∧ v ∈ V − S.

(⇐) Let ρ be a satisfying truth assignment for ϕ(G, s, t); consider a potential path P in G:
s = v1 → v2 → · · · → vk = t. We have ρ(s) = true, ρ(t) = false so there exists
some 1 ≤ i < k such that ρ(vi) = true and ρ(vi+1) = false. But (¬ρ(u) ∨ ρ(v)) for all
(u, v) ∈ E, hence (vi, vi+1) /∈ E and P is not a path from s to t in G.

Space Complexity:
Logarithmic, as we pass once over the input and have to remember only indices ≤ n.

2. See Papadimitriou’s book.

3. (a) We use dynamic programming:
Let m(k, t) be the result of Subset-Sum((a1, . . . , ak), t) for 0 ≤ k ≤ n, 0 ≤ t ≤ s.
Begin with m(0, 0) = true, m(0, t) = false for t > 0;
Calculate the next column m(k + 1, t) = m(k, t) ∨m(k, t− ak)1.
The output is m(n, S).
Time Complexity: We fill a (n+1)× (S +1) matrix, spending O(log S) time per cell2,
so the whole algorithm takes Θ(nS log S) time.
Note: space complexity can be reduced from O(nS log S) to O(S log S) by keeping only
the previous and current columns.

(b) Recall that the size of the input (A,S) for Subset-Sum is log(S) +
∑

a∈A log(a) =
O(n log amax + log S). The algorithm of 3a uses Θ(nS log S) = Θ(n2log S log S) which is
exponential regarding to the size of the input. Moreover, in the reduction that proves
Subset-Sum NP -hardness we actually used S = 2Ω(n).

1Define m(k, r) = false for r < 0.
2For adding two numbers.

1

Fall 2005-2006
Computational Complexity Exercise #4

Proposed Solution
By Rani Hod

4. Clearly DS ∈ NP since we can check whether S ⊂ V dominates G in O(|V |4). We show that
DS is NP -hard by reducing Vertex-Cover (VC) to it.

Let (G, k), G = (V,E) be an instance of VC. Let I ⊂ V be the set of isolated vertices in G.
Define ϕ(G, k) = (G′, k) where G′ = (V ′, E′), V ′ = V ∪ E − I, E′ = E ∪ {(v, e)|v ∈ e ∈ E}.
Correctness:

(⇒) Let S ⊆ V, |S| = k be a vertex cover of G and let S′ = S− I. For v ∈ V − I, there exists
some edge (u, v) ∈ E such that either u ∈ S′ or v ∈ S′; for e = (u, v) ∈ E, either u ∈ S′

or v ∈ S′. Hence, V ′ is dominated by S′ of size ≤ k.

(⇐) Let S ⊆ V ′, |S| ≤ k be a dominating set of G′ with minimal |S ∩ E|. We claim that
S ⊆ V : if some e = (u, v) ∈ S ∩ E exists, we could take either u or v to S instead of
e, reducing |S ∩ E|. The set remains a dominating set since {u, v, e} is a triangle in G′.
Now, for e = (u, v) ∈ E ⊆ V ′ we have some v ∈ S dominating e, so S is a vertex cover
of size ≤ k in G.

Space Complexity:
Logarithmic, as we remember only indices ≤ n.

5. Use a padding argument, analogous to the one used to scale up Savitch’s Theorem.

L ∈ NSPACE(n) = NSPACE(log 2n) ⇒ L′ ∈ NL ⇒
L′ ∈ co-NL ⇒ L ∈ co-NSPACE(log 2n) = co-NSPACE(n)

This actually proves NSPACE(f(n)) = co-NSPACE(f(n)) for all proper complexity func-
tions f(n) ≥ log n.

6. (a) We can solve 3-SAT in NL∗: given a formula ϕ and a witness y, we check that y encodes
a valid truth assignment for ϕ and that each clause of ϕ is satisfied by y. We only need
logarithmic space for indices, and obviously ϕ ∈ 3-SAT if and only if we accept ϕ, y.
Since any L ∈ NP can be logarithmically reduced to 3-SAT, NP ⊆ NL∗.

(b) We have NL ⊆ P ⊆ NP ⊆ NL∗. If P 6= NP , this containment is strict, so NL 6= NL∗.

2

