Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #3 By Rani Hod

1. (a)

Assume A, B € NL, i.e., there exist NDTMs M4, Mp deciding A, B respectively in
logarithmic space. We describe a NDTM deciding A U B in logarithmic space:

Algorithm 1 DECIDE-A-OR-B(x)

guess m € {0,1}
if m =0 then
return Ma(z)

else

return Mp(x)

Correctness:

(=) If x € AU B, then cither x € A or x € B. If x € A, there’s an execution path of
M 4 that returns true, so by guessing m = 0 and following that path, DECIDE-A-OR-B
returns true. The case x € B is analogous.

(<) If DECIDE-A-OR-B returned true, it has found an execution path in either My or
Mp that returns true, hence x € A or x € B. In any case, x € AU B.

Space Complexity: Only constant space more than M4, Mp = logarithmic space.

Using NL = co-NL and Question 1a,

A BENL=ABENL=AUBeNL=ANB=AUBcNL

SAME-SCC(G, u,v) = (8,T)-CoN(G, u,v) A (S,T)-CoN(G, v, u). Since (s,T)-CON € NL,
a reasoning similar to the one used in Question 1 leads to SAME-SCC € NL.

NL = co-NL, hence DIFFERENT-SCC = SAME-SCC € co-NL. For some fixed k, let
Ls; = {(G)| the directed graph G contains > k SCCs}. Consider the following algo-
rithm:

Algorithm 2 AT-LEAST-k-SCCs(G)

for =1 to k do
guess v; € V
for j=1toi—1do

if DIFFERENT-SCC(v;,v;) = false then
return false

return true

Correctness:

(=) If G has < k SCCs, then for every choice of vy, ..., vk, there exist j < i such that
v, v5 are in the same SCC, and for that pair, every execution path of DIFFERENT-SCC
returns false. Thus, all execution paths return false.

(<) If G has > k SCCs, then when choosing vy, ...,v; from distinct SCCs, for all
1 < j < i < k some execution path of DIFFERENT-SCC(v;,v;) returns true.Thus, there
exists an execution path that returns true.

Space Complexity:

AT-LEAST-k-SCCs has to remember k vertices (klogn) and DIFFERENT-SCC uses log-
arithmic space = logarithmic space.

Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #3 By Rani Hod

AT-LEAST-K-SCCS accepts L>j in logarithmic space, so L>; € NL for all £ € N, esp.
for k = 2006, LZQOOG € NL.

(¢) Using NL = co-NL, Question 1b and Question 2b,

L, = sz N L<(k+1) = sz N Lz(k+1) e NL

3. Let Ly = {(G)| G is bipartite}. G is bipartite if and only if G contains no odd cycles, therefore
Ly = {{G)| G contains an odd cycle}. A simple modification of Question 1 from Exercise 2
shows Ly € NL, hence Ly € co-NL = NL.

4. Let A € NP and let M 4 be a NDTM deciding A in polynomial time. Fix an input x. M4 runs
< poly(|z|) steps, so at most poly(|x|) non-deterministic decisions are made throughout any
execution path. Each decision has a constant number of alternatives (< 2|Q||T'|), so encoding
all decisions taken during some (specific) execution path as y takes poly(|z|) space.

Given (z,y) as input, the DTM M will simulate M4(z) where decisions are made based
on y’s contents (if y ends prematurely then M returns false). M accepts x < for some
v, ly| = poly(|z]) M(z,y) returns true < some execution path of M, (z), encoded by y,
returns true. We've shown A € NP*, hence NP C N P*.

5. Let A € P. Since CV AL is P-complete, A <; CV AL using some logarithmic reduction f.
Assuming CV AL € L, we can simulate the TM solving CV AL on f(z) without precomputing
f(x) (same process used in logarithmic reductions chaining), hence deciding A in logarithmic
space. Thus P C L. Together with the known result L C P, we get L = P.

6. o |{f:X — {0,1}} = 2/XI; n input bits < 2" input values = [X| = 2". Thus, the
number of boolean functions on n bits is 22".
e For each of the m = c% gates we have to choose its type (3 options), its first input
(< m + n options) and its second (if exists) input (< m + n options). Therefore, the
number of circuits with m gates and n inputs is at most 3™ (m + n)?™.

e We presume ¢ < 1 and compare the log of the two numbers: log, 22" — on,

log, (3™(m + n)*™) = mlog, 3 + 2mlog,(m + n)
< 2m + 2m(log, m + log, n)
2TL
< 2¢2" 4 2¢—(logy ¢ + n — logy n) + 2clogy
n
< 2¢(2™ 42" 4 logyn) < 5e- 2"

For ¢ < % we can see that there’re more possible boolean functions on n bits than circuits

. n n
of size g—n, hence some function cannot be computed by a circuit of size g—n

