Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #11 By Rani Hod

1.

(a)

Let L be an arbitrary N P language, accepted by a DTM M (z,y).

Recall the reduction L <p 3-SAT presented in Cook’s theorem:

Given x we construct f(r) = ¢, in variables {y;}7; that is satisfiable if and only if
M (x,y) accepts. Since the same y is a witness for both € L and f(z) € 3-SAT, we
conclude that 3-SAT is N P-hard under Levin reductions as (f, identity) are the requested
functions.

Consider the polynomial self-reduction for SAT presented in class. We needed a SAT
oracle, but as A is assumed to be N P-hard, we can polynomially reduce every SAT
query to an A query. Thus, there’s a polynomial oracle TM M that given a formula ¢,
computes a satisfying assignment p(¢) for it, if exists.

Consider the Levin reduction (f, g) from A to 3-SAT (shown to exist in la since A € NP).
Given = ¢ L, we have f(z) ¢ 3-SAT so MA(f(z)) rejects; Given = € L, we have
f(z) € 3-SAT so MA(f(z)) computes the witness w = p(f(x)). Using g, we can compute
y = g(w), a witness for z € L.

Obviously, all the reductions are done in polynomial time.

2. Let L be a PH-complete language. Then, 3k € N L € ¥y as L € PH = \/; .Y, By

4.

(a)

(b)

definition X}, € PH; since L is PH-hard, every L’ € PH can be reduced to L so L' € Y,
i.e., PH C Y; the result follows.
. The claim is true.

We have SAT € N P-complete C PSPAC E-complete, so every L € PSPACE can be poly-
nomially reduced to SAT and solved in N P, therefore PSPACE C NP.

We already know that NP C PSPACE; the result follows.

Let v = v1 — v9 and let V' = span{v}. We have dimV =1 as v # 0, so

. : 1
Prob(zv; = 2vy) = Prob(zv = 0) = Prob(z € V1) = = gdimVi—n _ g—dimV _ -

|25

Alternative reasoning:
since v # 0 there’s a coordinate i such that v* = 1. {z'} are independent, so

z

——
Prob(zv = 0) = Prob(z'v" = Z rivl) =
J#i
= Prob(z’ = 0) Prob(z = 0) + Prob(z" = 1) Prob(z = 1) =
_ Prob(z =0) +Prob(z=1) 1

2 2

Let x € Z% be a random vector. Compute ¢ = Cz, b = Bz, a = Ab(= ABz) and output
true if and only if a = c.

Time Complexity:

Thrice we multiply a n x n matrix by a vector, so it takes 30(n?) = O(n?) time.

Correctness:
If AB = C then obviously ¢ = Cx = ABx = a for any = € Z§.

Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #11 By Rani Hod

Otherwise, there’s some row index ¢ such that AB; # C;. Using 4a with v; = AB;,
vg = C;, we get a; # ¢; with probability %, SO

Prob(a =¢) =Prob(aj =¢; j=1,...,n) <Prob(a; =¢;) = %
We use a binary search on the range [1,m].
Initialize low < 1, high <— m. A typical round looks like this:
e Alice has her element list {a;}?_; and Bob has his list {b;} ;. Both Alice and Bob
know low, high,n, m, k; they calculate mid = [%1
e Alice calculates a = |{i|a; < mid}| and sends it to Bob.
e Bob calculates b = |{i|b; < mid}| and compares a + b to k.
o If a + b > k, then the answer lies in [low, mid — 1] so Bob sends “low” to Alice and
both update high «— mid — 1;
e If a+b < k, then the answer lies in [mid+ 1, high] so Bob sends “high” to Alice and
both update low «— mid + 1;
e Otherwise, a + b = k, i.e., the answer is mid so Bob sends “stop” to Alice and the
protocol ends.

Communication Complexity:

On every round high — low is halved so we have |log, m | rounds until the protocol ends;
Each round costs O(logn) since Alice sends 0 < a < n and Bob sends one of 3 possible
replies. The total communication complexity is O(lognlogm).

Correctness:

Each round maintains the invariant: the answer lies in [low, high| so the algorithm will
reach a point where high = low = the correct answer.

