
Fall 2005-2006
Computational Complexity Exercise #10

Proposed Solution
By Rani Hod

1. Any single clause c in a DNF formula is a 1-CNF formula, so we can polynomially check its
satisfiability (i.e., verify that if x appears in c, ¬x doesn’t appear and vice versa).

Now, the whole DNF formula φ is satisfiable if and only if any of its clauses is satisfiable, so
we can consider the clauses one by one and return

∨
c∈φ 1-CNF-Sat(c).

2. (a) Assuming NP 6= co-NP , ∃L ∈ NP \co-NP 1 (e.g., any NP -complete problem). Consider
Σ∗ ∈ P ⊆ co-NP . Now, L = L ∩ Σ∗ ∈ DP but L /∈ co-NP ⊇ NP ∩ co-NP .

(b) Let L ∈ DP . Then L = L1 ∩ L2 where L1 ∈ NP and L2 ∈ co-NP . Let M be a
polynomial NDTM accepting L1 and let O be an oracle for L2 ∈ NP .
Consider a NDTM M ′ which simulates M , queries O and accepts if and only if M
accepted and the O rejected. It’s easy to see that M accepts L and M ′ ∈ NPNP = Σ2.

(c) Consider L1 = 3-Sat × 3-CNF and L2 = 3-CNF × 3-Sat. As 3-CNF ∈ P , we have
L1 ∈ NP, L2 ∈ co-NP so Sat-UnSat = 3-Sat× 3-Sat = L1 ∩ L2 ∈ DP .

(d) Let L ∈ DP . Then L = L1 ∩ L2 where L1 ∈ NP and L2 ∈ co-NP . Since 3-Sat
is NP -complete, we have a polynomial reduction f from L1 to 3-Sat; since 3-Sat is
co-NP -complete, we have a polynomial reduction g from L2 to 3-Sat.
Consider the reduction h(x) = (f(x), g(x)). We have

x ∈ L ⇔ x ∈ L1 ∧ x ∈ L2 ⇔ f(x) ∈ 3-Sat ∧ g(x) ∈ 3-Sat ⇔ h(x) ∈ Sat-UnSat

and h is polynomial as f, g are.

3. Sat ∈ NP ⊂ EXP , so there exists a deterministic TM M accepting Sat. Consider the
deterministic TM M ′ which simulates M and halts if and only if M accepts.

Let 〈M ′〉 be a description of M ′, and consider the reduction f(φ) = (〈M ′〉, φ) from SAT to
Halt.

Correctness: φ ∈ Sat ⇔ M accepts φ ⇔ M ′ halts on φ.

Space Complexity: Logarithmic, as 〈M ′〉 is constant and φ should be simply copied as-is.

4. We prove this by induction over t.

For the base case t = 0, by Reach’s definition Reach(C1, C2, 1) = true ⇔ δ(C1) = C2 which
is equivalent to the existence of a path of length ≤ 20 = 1 in the graph2.

Assuming correctness for t, we consider t + 1. Reach(C1, C2, t + 1) = true is equivalent to
∃Cmid (Reach(C1, Cmid, t) = true) ∧ (Reach(Cmid, C2, t) = true).

By the induction hypothesis, this is equivalent to the existence of two paths C1 Cmid and
Cmid C2 of length ≤ 2t each; this is equivalent3 to a path C1 C2 of length ≤ 2t+1.

1Why is NP ⊂ co-NP impossible?
2We assume C1 6= C2, of course.
3(⇒) concatenate the two paths; (⇐) split the path in half.

1

