
Fall 2005-2006
Computational Complexity Exercise #5

Proposed Solution
By Rani Hod

1. (a) We show that UpToOneSAT ∈ NP ; the result follows.

UpToOneSAT = {ϕ ∈ CNF |there exist ≥ 2 satisfying truth assignments to ϕ}

Consider an instance ϕ. We guess two truth assignments and check that they are different
and both satisfy ϕ.

(b) We show that SAT ≤L UpToOneSAT; the result follows.
Consider an instance ϕ of SAT and let ϕ′ = ϕ ∧ (z ∨ ¬z) where z is a new variable
(obviously a log-space reduction).

(⇒) Let ρ be a satisfying truth assignment for ϕ. Then both ρtrue and ρfalse satisfy ϕ′

where ρv(x) = ρ(x) for x 6= z and ρv(z) = v.
(⇐) ϕ is a sub-formula of ϕ′, hence any truth assignment satisfying ϕ′ satisfies ϕ as well.

2. A d-regular graph cannot contain a clique of size d + 2, since the latter is a (d + 1)-regular
graph. Here’s a polynomial algorithm that solves the problem:

Given an instance (G, k), we answer false if k > d + 1 or n = |V | < k. Otherwise, we check
the

(
n
k

)
≤ nk ≤ nd+1 sets of size k in G and answer true if any of them is a clique.

Time Complexity: ≤
(
k
2

)
nd+1 = O(nd+1).

The result follows for d = 2005.

Note: Can you find a
(

d
k

)(
k
2

)
n = O(n) algorithm?

3. Let G = (A,B, E) be a bipartite graph where A = {ai}r
i=1, B =

⋃r
i=2 Bi, Bi = {bi

j |ij ≤ r},
E = {(at+(i−1)j , b

i
j)|1 ≤ t ≤ j, 2 ≤ i ≤ r, ij ≤ r}. Every vertex bi

j ∈ Bi has degree i; every
vertex ak ∈ A has degree < r since it has at most one neighbour from Bi for each 2 ≤ i ≤ r.

The greedy algorithm chooses first all vertices of Br (of maximal degree r) to the vertex cover.
Eliminating these edges from the graph, the degree of every vertex in A is ≤ r−2. The greedy
algorithm chooses now all vertices of Br−1 (of maximal degree r−1) to the vertex cover. This
continues until the graph has no edges, and the algorithm returns the vertex cover B of size
|B| =

∑r
i=2b

r
i c = Θ(r log r), where the optimal vertex cover is A of size r. The approximation

ratio of the algorithm, therefore, is Ω(log r).

The result follows for r = 16 and |B| = 34 > 2r.

4. Similar to what we do when composing log-space reductions, we simulate Mf ’s run on g(x)
and compute each bit of g(x) when Mf tries to access it by the following method:
Simulate Mg on x. Whenever Mg writes a bit, advance a counter; when the requested bit
arrives, remember it. Continue running until either Mg accepts (and then return the requested
bit of g(x) to Mf ) or rejects (and then reject as well).

Correctness:
We never return a wrong bit of g(x) and there’s always an execution path that of Mg that
returns the correct bit. Therefore, there’s always an execution path of Mf that returns the
correct answer.

Space Complexity:
Simulating Mg takes O(log |x|), remembering which bit of g(x) is needed takes O(log |g(x)|)
and simulating Mf takes O(log |g(x)|) as well. We have |g(x)| = poly(|x|) since Mg uses
log-space, hence O(log |g(x)|) = O(log |x|).

1



Fall 2005-2006
Computational Complexity Exercise #5

Proposed Solution
By Rani Hod

5. Let e1, e2, . . . , em be the edges ordered by increasing weights (two edges with identical weights
retain the original order defined by the input). The ith of the m iterations performed in
Kruskal’s algorithm is done as follows:

For each edge ei = (ui, vi) we check whether ui and vi are connected1 in the graph Gi =
(V,Ei), Ei = {e1, . . . , ei}. If not, write ei to the output.

Correctness:
Implied by Kruskal’s algorithm. Note that actually we should have checked whether ui and
vi are connected in MST (Gi), but since this is a spanning tree, the answer is the same.

Space Complexity:
Obviously the order of E given in the input is not necessarily e1, e2, . . . , em, but we only have
to remember ei in order to determine Ei, and we can find e1 and advance from ei to ei+1

using logarithmic space as well.

6. (a) Let G = (V,E) be a tournament graph without directed 3-cycles. Assume that G
contains some directed cycle and let C be a cycle of minimal length in G. G is simple,
has neither anti-parallel edges nor directed 3-cycles, so |C| ≥ 4. Thus, C = u → v →
x → y  u. The edge (x, u) /∈ E since G has no directed 3-cycles; hence (u, x) ∈ E and
C ′ = u → x → y  u is a shorter cycle than C, contradicting our choice of C.

(b) Let G = (V,E). We examine all triplets u, v, w ∈ V ; if u → v → w → u in G we add
u, v, w to our vertex cover and delete them from the graph.
Correctness:
After the algorithm is done, the graph remains directed 3-cycle free, hence by 6a directed
cycle free.
Time Complexity: O(|V |3), polynomial.
Approximation Ratio:
Our algorithm returns a vertex cover of size 3k when it finds k vertex-disjoint directed
3-cycles. Every algorithm solving the problem must remove at least one vertex from each
such cycle, so it returns at least k vertices. Therefore, the approximation ratio is ≤ 3.

1run both s-t-Con and s-t-Con. if both return false, reject; otherwise return the (100% correct) answer.

2


