Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #6 By Rani Hod

E(A,V—A) y; we have to show

1. We seek ¢ = min ¢4 where ¢y = — 32—
Acy A A= min([A[[V=A]

e (upper bound) ¢ < glcu‘} ca by showing some A such that cy = ¢;

e (lower bound) ¢ > gnclr‘} ca by showing that for all A, c4 > c.

(a) G = K,. Forany A CV, E(A,V — A) = |A||V — A|, hence c4 = max(|4],|V — A|).

Therefore, ¢ = mincy = [§].

(b) G =73, a 4-regular lattice. Consider A = {(,5)|0 <i<n,0<j <%}, |A| =n% (of n?
vertices). We have E(A,V — A) = 4n since every vertex on the side boundary of the A
has one neighbor in V — A, so c < cy = % (for even n).

For the lower bound, consider a set A of size |A| < %2 Assume without loss of generality
that both A and V — A are connected®.

By the pigeonhole principle, A has vertices with < 2 neighbours in A (e.g., corner
vertices)?. Any vertex of V — A that has > 3 neighbours in A can switch places with
such a corner vertex, only decreasing F(A,V — A), so we can arrange that both A is
(almost) rectangular.

Consider now a x X y rectangle. If z,y < n, it has 2(z+y) boundary vertices contributing
2(z +y) edges to E(A,V — A), thus ¢y = 2 + % > 4nﬁ; If x =n or y = n (both cannot
happen as zy = |A4] < %2) we have E(A,V — A) =2n, 80 cq > %" >4

In any case, c4 > %.

(c) Consider A = {(0,22,...,2,)|x; € Zs}, |A| =271, We have E(A,V — A) = 2"~ since
every vertex (0,za,...,2,) € A has exactly one neighbor (1,x2,...,2,) € V — A, so
c<cyp=1.

The proof of the lower bound is similar to 1b.

2. We assume A(G) = A (independent on n). For a given vertex w € V, let U;(w) be the set of
vertices reachable from w in i steps. Obviously, Up(w) = {w}, Uiy1 = U; U N(U;).
Since G is a c-expander, |E(U;, V —U;)| > c|U;| (as long as |Us| < 5). Every vertex in N (Uj;)
has degree < A, so |[N(U;)| > % |E(U;, V —=U;)| > £|U;| and |U41| = (14 £)|Us|. Hence, for
it =1+logy, ¢ 3, |Uir| > 3.
Now, U;+(u) N U= (v) # @ since both cover more than half of V', thus there exists a path
connecting u and v of length 2i* = O(logn).

Note that the above holds for directed graphs as well (consider the analoguous V;(w), the set
of vertices from which w is reachable in i steps).

3. We reduce from Gar-4-NAE.

Lemma. GAPy,;-4-NAE <p GAP[4 ;1-3-NAE for o/ = #,b’ = 17“’

'f A has more than one connected component, we can decrease F(A,V — A) by moving a connected component
of it near another connected component.
2Unless A is a rectangle of length or width n, but that case is covered as well in the analysis.

Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #6 By Rani Hod

4.

Proof. Given a 4-CNF formula ¢ with m clauses, we generate a 3-CNF formula ¢’ with
2m clauses by replacing each clause C; = I3 Vs VI3 V Iy by two clauses C} = I3 VI V 2,
Cl" =13V 14V —z; where z; is a new variable. Obviously, the reduction is polynomial.

As seen in the 4-NAE <p 3-NAE reduction, a truth assignment NAE-satisfies C; if and
only if it can be extended to a truth assigment that NAE-satisfies both C} and C}’ (otherwise
exactly one of Cf, C!" is NAE-satisfied).

If p € YES, at least bm clauses can be NAE-satisfied in ¢, so at least b-2m+ (1 —b)m = b'2m
clauses can be NAE-satisfied in ¢, hence ¢’ € YES.

If ¢ € NO, at most am clauses can be NAE-satisfied in ¢, so at most a-2m+(1—a)m = a’2m
clauses can be NAE-satisfied in ¢, hence ¢’ € NO. O

Since GAP[,-4-NAE is known to be NP-hard for a = % 4+ €¢,b = 1, we conclude that
GAP[%+€,,1]—3-NAE is NP-hard as well, so unless P = NP no polynomial algorithm can
approximate 3-NAE to within ¢ for any ¢ > %.

(a) We reduce from GApP-E3-SAT.

Lemma. GAP[a)b]—E3—SAT <p GAP[a/’b/]—EZL—SAT for a’ = H?a, b = ITer

Proof. Given a 3-CNF formula ¢ with m clauses, we generate a 4-CNF formula ¢’ with
2m clauses by replacing each clause C; =13 VI3 VI3 by two clauses C =13 VIa Vi3V z,
C!' =1y Via VI3V —z where z is a new variable. Obviously, the reduction is polynomial.
Without loss of generality, any truth assignment lets z = true, so ¢’ = @ A A\, true.
If p € YES, at least bm clauses can be satisfied in @, so at least bm +m = '2m clauses
can be satisfied in ¢’, hence ¢’ € YES.

If o € NO, at most am clauses can be satisfied in ¢, so at most am +m = a’2m clauses
can be satisfied in ¢’, hence ¢’ € NO. O

Since GAP|4)-E3-SAT is assumed to be N P-hard for a = %—&— €,b =1, we conclude that
GAP[%+E,71]—E4—SAT is N P-hard as well, so unless P = NP no polynomial algorithm
can approximate E4-SAT to within ¢ for any ¢ > %.

(b) For a random truth assignment, the probability of a single clause to be satisfied (}) is
}—g, hence the expected number of satisfied clauses is }—gm and there exists some truth
assignment satisfying at least %—g of the clauses. Therefore, a conditional expectation

algorithm (similar to the one for E3-SAT) approximates E4-SAT to within %

(¢) No, as () is no longer true. Example: only half of the clauses in ¢ = (zVa VaVz)A
(mz V -z V -z V ox) may be satisfied.

(a) Consider any truth assignment p and its complement —p (assigning —p(z) to each x).
Every 3-equation is satisfied by exactly one of p,—p, hence for every system of m 3-
equations, at least % can be satisfied by one of them. Therefore, the algorithm that
tests p and returns either p or —p is a polynomial 2-approximation.

Another possible solution is by conditional expectation (as was shown in class for E3-
SAT).

Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #6 By Rani Hod

(b)
()

(d)

As seen in 5a, NO = @ for this problem; therefore, the trivial return-true algorithm
maps Y ES instances to true and NO instances (none exist) to false, as requested.

Since Y E'S instances can be identified by a polynomial-time algorithm (e.g., elimination
over Zs), this algorithm maps Y E'S instances to true and all other (i.e., don’t care and
NO instances) to false, as requested.

We show that GAP1,.; o-LINEQ <p GAP[%+E,71_E/]—3—SAT for ¢ =
follows.

75 the result
Assume without loss of generality that all equations are of the form iy @l ® 15 =1 (by
negating a literal and the free term, if needed).

Given a system FE of m 3-equations, we generate a 3-CNF formula ¢ with 4m clauses

by adding for each equation e : [y @l @ I3 = 1 the four clauses generated by converting
(ll — (12 — l3)> to CNF:

Ce == (Zl \Y l2 V 13) AN (ll V _|lg V ﬁlg) AN ("ll V lg \Y _|lg) A\ ("ll V _|12 \Y 13)

Obviously, the reduction is polynomial.

Observe that an assignment satisfies e if and only it satisfies all four 3-CNF clauses, and
any assignment that doesn’t satisfy e, satisfies exactly three of them.

If E € YES, at least (1—€)m equations in F can be satisfied, so at least (1—¢)4m+e-3m =
(1 — €')4m clauses can be satisfied in ¢, hence ¢ € YES.

If E € NO, at most (1 + €)m equations in E can be satisfied, so at most (3 + €)dm +

(3 — €)3m = (% + ¢/)4m clauses can be satisfied in ¢, hence ¢ € NO.

