
Fall 2006-2007
Computational Complexity Exercise #3

Proposed Solution
By Rani Hod

1. A d-regular graph cannot contain a clique of size d + 2, since the latter is a (d + 1)-regular
graph. Here’s a polynomial algorithm that solves the problem:

Given an instance (G, k), we answer false if k > d + 1 or n = |V | < k. Otherwise, we check
the

(
n
k

)
≤ nk ≤ nd+1 sets of size k in G and answer true if any of them is a clique.

Time Complexity: ≤
(
k
2

)
nd+1 = O(nd+1).

The result follows for d = 2005.

Note: Can you find a
(

d
k

)(
k
2

)
n = O(n) algorithm?

2. Any single clause c in a DNF formula is a 1-CNF formula, so we can polynomially check its
satisfiability (i.e., verify that if x appears in c, ¬x doesn’t appear and vice versa).

Now, the whole DNF formula φ is satisfiable if and only if any of its clauses is satisfiable, so
we can consider the clauses one by one and return

∨
c∈φ 1-CNF-Sat(c).

3. Sat ∈ NP ⊂ EXP , so there exists a deterministic TM M accepting Sat. Consider the
deterministic TM M ′ which simulates M and halts if and only if M accepts.

Let 〈M ′〉 be a description of M ′, and consider the reduction f(φ) = (〈M ′〉, φ) from SAT to
Halt.

Correctness: φ ∈ Sat⇔M accepts φ⇔M ′ halts on φ.

Space Complexity: Logarithmic, as 〈M ′〉 is constant and φ should be simply copied as-is.

4. (a) Assume we have an oracle for Clique(G, k). Let ω = ω(G) be the size of the maximal
clique in G; note that 1 ≤ ω ≤ n.

Algorithm 1 Find-Max-Clique(G)
ω ← ω(G) {use any search algorithm (naive, linear, binary)}
K ← V
for v ∈ K do

if Clique(G[K − {v}], ω) = true then
K ← K − {v}

return K

Correctness:
The algorithm erases all vertices not crucial so the survival of the largest clique, so at
the end we have |K| = ω(K) = ω(G) and K is the requested clique.
Time Analysis:
The oracle is queried ≤ 2n times.

(b) The interesting case is of course G1 ∼ G2. Denote G1’s vertices by {u1, u2, . . . , un} and
G2’s vertices by {v1, v2, . . . , vn}, with the isomorphism being vi ∼ uπ(i).
We need a set of n distinguishable gadgets {Hi}ni=1 that haven’t appeared in G1, G2, for
instance Hi = Kn+i.
Correctness:
In step i we recover π(i) assuming we know π(j) for j < i by checking all possibilities.
Any isomorphism G1

τ∼ G2 must have τ(j) = π(j) for j < i due to the gadget Hj . By
the end of step n, we know π entirely.

1

Fall 2006-2007
Computational Complexity Exercise #3

Proposed Solution
By Rani Hod

Algorithm 2 Find-Isomorphism(G1, G2)
for i← 1 to n do

connect Hi to ui in G1

for k ← 1 to n do
G′

2 ← G2

connect Hi to vk in G′
2

if Isomorphic(G1, G
′
2) then

π(i)← k
G2 ← G′

2

break from the k for-loop
if we got here not by breaking from the loop (can only happen for k = 1), return false

return π

Time Analysis:
The oracle is queried ≤ n2 times.
Note that by erasing vertices (instead of marking them) we might get the wrong permu-
tation (e.g., consider a path of length 3).

5. (a) Let L be an arbitrary NP language, accepted by a DTM M(x, y).
Recall the reduction L ≤P 3-Sat presented in Cook’s theorem:
Given x we construct f(x) = φM,x in variables {yi}ni=1 that is satisfiable if and only if
M(x, y) accepts. Since the same y is a witness for both x ∈ L and f(x) ∈ 3-Sat, we
conclude that 3-Sat is NP -hard under Levin reductions as (f, identity) are the requested
functions.

(b) Consider the polynomial self-reduction for Sat presented in class. We needed a Sat
oracle, but as A is assumed to be NP -hard, we can polynomially reduce every Sat
query to an A query. Thus, there’s a polynomial oracle TM MA that given a formula φ,
computes a satisfying assignment ρ(φ) for it, if exists.
Consider the Levin reduction (f, g) from A to 3-Sat (shown to exist in 5a since A ∈ NP).
Given x /∈ L, we have f(x) /∈ 3-Sat so MA(f(x)) rejects; Given x ∈ L, we have
f(x) ∈ 3-Sat so MA(f(x)) computes the witness w = ρ(f(x)). Using g, we can compute
y = g(w), a witness for x ∈ L.
Obviously, all the reductions are done in polynomial time.

2

