Fall 2006-2007 . Proposed Solution
Computational Complexity Exercise #3 By Rani Hod

1.

4.

A d-regular graph cannot contain a clique of size d + 2, since the latter is a (d + 1)-regular
graph. Here’s a polynomial algorithm that solves the problem:

Given an instance (G, k), we answer false if k > d+ 1 or n = |V| < k. Otherwise, we check
the (Z) < nP <t sets of size k in G and answer true if any of them is a clique.

Time Complexity: < (¥)n®+! = O(ndt?).
The result follows for d = 2005.

Note: Can you find a (ﬁ) (g)n = O(n) algorithm?

. Any single clause ¢ in a DNF formula is a 1-CNF formula, so we can polynomially check its

satisfiability (i.e., verify that if x appears in ¢, =a doesn’t appear and vice versa).

Now, the whole DNF formula ¢ is satisfiable if and only if any of its clauses is satisfiable, so

we can consider the clauses one by one and return \/ ., 1-CNF-SaT1(c).

. SAT € NP C EXP, so there exists a deterministic TM M accepting SAT. Consider the

deterministic TM M’ which simulates M and halts if and only if M accepts.

Let (M) be a description of M’, and consider the reduction f(¢) = ((M’),$) from SAT to
HarT.

Correctness: ¢ € SAT < M accepts ¢ < M’ halts on ¢.
Space Complexity: Logarithmic, as (M’) is constant and ¢ should be simply copied as-is.

(a) Assume we have an oracle for CLIQUE(G, k). Let w = w(G) be the size of the maximal
clique in G; note that 1 <w < n.

Algorithm 1 FIND-MAX-CLIQUE(G)

w < w(G) {use any search algorithm (naive, linear, binary)}
K<V
for v € K do

if CLIQUE(G[K — {v}],w) = true then
K — K —{v}

return K

Correctness:

The algorithm erases all vertices not crucial so the survival of the largest clique, so at
the end we have |K| = w(K) = w(G) and K is the requested clique.

Time Analysis:

The oracle is queried < 2n times.

(b) The interesting case is of course G; ~ Ga. Denote Gy’s vertices by {u1, us,...,u,} and
Go’s vertices by {v1,v2,...,v,}, with the isomorphism being v; ~ tr(;).
We need a set of n distinguishable gadgets { H;}?"_; that haven’t appeared in Gy, Ga, for
instance H; = K, 4.
Correctness:
In step 7 we recover m(i) assuming we know m(j) for j < ¢ by checking all possibilities.
Any isomorphism G; ~ Gy must have 7(j) = 7(j) for j < i due to the gadget H;. By
the end of step n, we know 7 entirely.

Fall 2006-2007 . Proposed Solution
Computational Complexity Exercise #3 By Rani Hod

Algorithm 2 FIND-ISOMORPHISM(G1, G2)

for i — 1 to n do
connect H; to u; in Gy
for Kk +— 1 ton do

G/2 — G2

connect H; to vy in G

if ISOMORPHIC(G1, G%) then
(i) — k
G2 — GIQ
break from the k for-loop

if we got here not by breaking from the loop (can only happen for k = 1), return false
return w

Time Analysis:

The oracle is queried < n? times.

Note that by erasing vertices (instead of marking them) we might get the wrong permu-
tation (e.g., consider a path of length 3).

Let L be an arbitrary N P language, accepted by a DTM M (x,y).

Recall the reduction L <p 3-SAT presented in Cook’s theorem:

Given z we construct f(z) = ¢um , in variables {y;}7_; that is satisfiable if and only if
M (z,y) accepts. Since the same y is a witness for both z € L and f(z) € 3-SAT, we
conclude that 3-SAT is N P-hard under Levin reductions as (f, identity) are the requested
functions.

Consider the polynomial self-reduction for SAT presented in class. We needed a SAT
oracle, but as A is assumed to be N P-hard, we can polynomially reduce every SAT
query to an A query. Thus, there’s a polynomial oracle TM M that given a formula ¢,
computes a satisfying assignment p(¢) for it, if exists.

Consider the Levin reduction (f, g) from A to 3-SAT (shown to exist in 5a since A € NP).
Given = ¢ L, we have f(x) ¢ 3-SAT so MA(f(x)) rejects; Given = € L, we have
f(z) € 3-SAT so MA(f(z)) computes the witness w = p(f(x)). Using g, we can compute
y = g(w), a witness for x € L.

Obviously, all the reductions are done in polynomial time.

