
Fall 2006-2007
Computational Complexity Exercise #4

Proposed Solution
By Rani Hod

1. (a) Assume A,B ∈ NL, i.e., there exist NDTMs MA,MB deciding A,B respectively in
logarithmic space. We describe a NDTM deciding A ∪B in logarithmic space:

Algorithm 1 Decide-A-or-B(x)
guess m ∈ {0, 1}
if m = 0 then

return MA(x)
else

return MB(x)

Correctness:
(⇒) If x ∈ A ∪ B, then either x ∈ A or x ∈ B. If x ∈ A, there’s an execution path of
MA that returns true, so by guessing m = 0 and following that path, Decide-A-or-B
returns true. The case x ∈ B is analogous.
(⇐) If Decide-A-or-B returned true, it has found an execution path in either MA or
MB that returns true, hence x ∈ A or x ∈ B. In any case, x ∈ A ∪B.
Space Complexity: Only constant space more than MA,MB ⇒ logarithmic space.

(b) Using NL = co-NL and Question 1a,

A,B ∈ NL ⇒ A, B ∈ NL ⇒ A ∪B ∈ NL ⇒ A ∩B = A ∪B ∈ NL

2. (a) Same-SCC(G, u, v) = (s,t)-Con(G, u, v)∧(s,t)-Con(G, v, u). Since (s,t)-Con ∈ NL,
a reasoning similar to the one used in Question 1 leads to Same-SCC ∈ NL.

(b) NL = co-NL, hence Different-SCC = Same-SCC ∈ co-NL. For some fixed k, let
L≥k = {〈G〉| the directed graph G contains ≥ k SCCs}. Consider the following algo-
rithm:

Algorithm 2 At-Least-k-SCCs(G)
for i = 1 to k do

guess vi ∈ V
for j = 1 to i− 1 do

if Different-SCC(vi, vj) = false then
return false

return true

Correctness:
(⇒) If G has < k SCCs, then for every choice of v1, . . . , vk, there exist j < i such that
vi, vj are in the same SCC, and for that pair, every execution path of Different-SCC
returns false. Thus, all execution paths return false.
(⇐) If G has ≥ k SCCs, then when choosing v1, . . . , vk from distinct SCCs, for all
1 ≤ j < i ≤ k some execution path of Different-SCC(vi, vj) returns true.Thus, there
exists an execution path that returns true.
Space Complexity:
At-Least-k-SCCs has to remember k vertices (k log n) and Different-SCC uses log-
arithmic space ⇒ logarithmic space.

1

Fall 2006-2007
Computational Complexity Exercise #4

Proposed Solution
By Rani Hod

At-Least-k-SCCs accepts L≥k in logarithmic space, so L≥k ∈ NL for all k ∈ N, esp.
for k = 2006, L≥2006 ∈ NL.

(c) Using NL = co-NL, Question 1b and Question 2b,

L=k = L≥k ∩ L<(k+1) = L≥k ∩ L≥(k+1) ∈ NL

3. Clearly DS ∈ NP since we can check whether S ⊂ V dominates G in O(|V |4). We show that
DS is NP -hard by reducing Vertex-Cover (VC) to it.

Let (G, k), G = (V,E) be an instance of VC. Let I ⊂ V be the set of isolated vertices in G.
Define ϕ(G, k) = (G′, k) where G′ = (V ′, E′), V ′ = V ∪ E − I, E′ = E ∪ {(v, e)|v ∈ e ∈ E}.
Correctness:

(⇒) Let S ⊆ V, |S| = k be a vertex cover of G and let S′ = S− I. For v ∈ V − I, there exists
some edge (u, v) ∈ E such that either u ∈ S′ or v ∈ S′; for e = (u, v) ∈ E, either u ∈ S′

or v ∈ S′. Hence, V ′ is dominated by S′ of size ≤ k.

(⇐) Let S ⊆ V ′, |S| ≤ k be a dominating set of G′ with minimal |S ∩ E|. We claim that
S ⊆ V : if some e = (u, v) ∈ S ∩ E exists, we could take either u or v to S instead of
e, reducing |S ∩ E|. The set remains a dominating set since {u, v, e} is a triangle in G′.
Now, for e = (u, v) ∈ E ⊆ V ′ we have some v ∈ S dominating e, so S is a vertex cover
of size ≤ k in G.

Space Complexity:
Logarithmic, as we remember only indices ≤ n.

4. (a) We can solve 3-SAT in NL∗: given a formula ϕ and a witness y, we check that y encodes
a valid truth assignment for ϕ and that each clause of ϕ is satisfied by y. We only need
logarithmic space for indices, and obviously ϕ ∈ 3-SAT if and only if we accept ϕ, y.
Since any L ∈ NP can be logarithmically reduced to 3-SAT, NP ⊆ NL∗.

(b) We have NL ⊆ P ⊆ NP ⊆ NL∗. If P 6= NP , this containment is strict, so NL 6= NL∗.

5. Similar to what we do when composing log-space reductions, we simulate Mf ’s run on g(x)
and compute each bit of g(x) when Mf tries to access it by the following method:
Simulate Mg on x. Whenever Mg writes a bit, advance a counter; when the requested bit
arrives, remember it. Continue running until either Mg accepts (and then return the requested
bit of g(x) to Mf) or rejects (and then reject as well).

Correctness:
We never return a wrong bit of g(x) and there’s always an execution path that of Mg that
returns the correct bit. Therefore, there’s always an execution path of Mf that returns the
correct answer.

Space Complexity:
Simulating Mg takes O(log |x|), remembering which bit of g(x) is needed takes O(log |g(x)|)
and simulating Mf takes O(log |g(x)|) as well. We have |g(x)| = poly(|x|) since Mg uses
log-space, hence O(log |g(x)|) = O(log |x|).

2

